Thickness and Structure of Permafrost in Oil and Gas Fields of the Yamal Peninsula: Evidence from Shallow Transient Electromagnetic (sTEM) Survey
Abstract
:1. Introduction
2. Study Area
2.1. Geocryological Conditions of Northern Yamal
2.2. Geocryological Conditions within the Studied Oil and Gas Field
2.3. Local Geomorphology
2.4. Local Geology
3. Materials and Methods
3.1. Transient Electromagnetic Method (TEM): Physics, Petrophysical Explanation, and Application
3.2. Instruments, Data Processing and Inversion
4. Results and Interpretation
4.1. Permafrost Mapping
4.2. Taliks
4.3. Cryopegs
4.4. Ground Ice
4.5. Low-Resistivity Anomalies Reaching Permafrost Base
5. Discussion
- The distortion of seismic data by shallow features in permafrost [7];
- Emergencies caused by warming-induced well collapse, ice plugs, and gas breakthrough during well cementing, etc.;
- Damage to infrastructure from frost heaving, thermokarst, and other periglacial processes;
- Explosive gas emission, including during drilling, due to the presence of pressurized free gas and gas hydrates prone to dissociation.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baulin, V.V.; Chernyadyev, V.P. Permafrost conditions of Western Siberia and issues of their research in connection with the transfer of part of the river flow to the southern regions. Eng. Geol. 1979, 5, 23–28. [Google Scholar]
- Baulin, Y.I. Permafrost in Petroleum Provinces of the USSR; Nauka: Moscow, Russia, 1985; 176p. (In Russian) [Google Scholar]
- Trofimov, V.T. Spatial Variability of Engineering and Geological Conditions of the West Siberian Plate; Moscow University Press: Moscow, Russia, 1977; 280p. (In Russian) [Google Scholar]
- Trofimov, V.T.; Badu, Y.B.; Kudryashov, V.G.; Firsov, N.G. Yamal Peninsula (Engineering and Geological Essay); Moscow University Press: Moscow, Russia, 1986; 211p. (In Russian) [Google Scholar]
- Trofimov, V.T.; Badu, Y.B.; Dubikov, G.I. Cryogenic Structure and Ice Contents of Permafrost in West Siberia; Moscow State University Publishers: Moscow, Russia, 1980; 246p. (In Russian) [Google Scholar]
- Ershov, E.D. (Ed.) Geocryology of the USSR. West Siberia; Nedra: Moscow, Russia, 1989; 454p. (In Russian) [Google Scholar]
- Shelokhov, I.A.; Buddo, I.V.; Smirnov, A.S.; Piyankov, A.A.; Tatiyanin, N.V. Shallow velocity model from the transient electromagnetic method data: Results of application in Eastern and Western Siberia. Georesursy = Georesources 2021, 23, 60–72. [Google Scholar] [CrossRef]
- Misurkeeva, N.V.; Buddo, I.V.; Shelokhov, I.A.; Smirnov, A.S.; Agafonov, Y.A. Permafrost rocks structure within the north of Western Siberia from modern geophysical studies. In Proceedings of the the International Conference on Cryosphere Transformation and Geotechnical Safety in the Arctic, Salekhard, Russia, 8–12 December 2021; Abstracts, Conference Reports. Melnikov, V.P., Sadurtdinov, M.R., Eds.; pp. 296–299. (In Russian). [Google Scholar]
- Buddo, I.; Sharlov, M.; Shelokhov, I.; Misyurkeeva, N.; Seminsky, I.; Selyaev, V.; Agafonov, Y. Applicability of transient electromagnetic surveys to permafrost imaging in Arctic West Siberia. Energies 2022, 15, 1816. [Google Scholar] [CrossRef]
- Misyurkeeva, N.; Buddo, I.; Shelokhov, I.; Smirnov, A.; Nezhdanov, A.; Agafonov, Y. The structure of permafrost in northern West Siberia: Geophysical evidence. Energies 2022, 15, 2847. [Google Scholar] [CrossRef]
- Popov, A.I. Permafrost in West Siberia; Izd. AN SSSR: Moscow, Russia, 1953; 230p. (In Russian) [Google Scholar]
- Baulin, V.V.; Belopukhova, E.B.; Dubikov, G.I.; Shmelev, L.M. Geocryological Conditions of the West Siberian Plain; Nauka: Moscow, Russia, 1967; 214p. (In Russian) [Google Scholar]
- Trofimov, V.T.; Badu, Y.B.; Vasilchuk, Y.K. Geocryological Division of the West Siberian Plate; Nauka: Moscow, Russia, 1987; 222p. (In Russian) [Google Scholar]
- Podborny, E.E. Geodynamic and Geocryological Zoning of the Kruzenshtern, West Tambei, North Tambei, Malygi, and Tasi oil and Gas Fields; Research Report No 232119551/614-2010; TyumenNIIgiprogaz Ooo: Tyumen, Russia, 2010; 183p. [Google Scholar]
- Borisov, B.A.; Zastrozhnov, A.S.; Petrov, O.V. (Eds.) Map of Quaternary Sediments in the Russian Territory. Scale 1:2 500 000; VSEGEI: St. Petersburg, Russia, 2014; Available online: https://vsegei.ru/ru/info/quaternary-25002014 (accessed on 1 December 2023).
- Petrov, O.V.; Morozov, A.F. (Eds.) Map of Quaternary Sediments in the Russian Territory. Scale 1:2 500 000. Explanatory Note; VSEGEI: St. Petersburg, Russia, 2013; 220p. (In Russian) [Google Scholar]
- Ershov, E.D. General Geocryology; Moscow University Press: Moscow, Russia, 2002; 682p. (In Russian) [Google Scholar]
- Dzhurik, V.I. Forecast of changes in the elastic parameters of sand during transition from frozen to unfrozen state. In Soviet Geology and Geophysics; Allerton Press: New York, NY, USA, 1982; Volume 23, pp. 87–95. [Google Scholar]
- Voronkov, O.K.; Frolov, A.D. Physical properties of rocks at negative temperatures, In Petrophysics; Nedra: Moscow, Russia, 1992; Volume 3, pp. 43–65. (In Russian) [Google Scholar]
- Frolov, A. Electric and Elastic Properties of Frozen Rocks and Ice; ONTI PNC RAN: Pushchino, Russia, 1998; 515p. (In Russian) [Google Scholar]
- Omeliyanenko, A.V. Ground Penetrating Radar Surveys of Frozen Ground: Theoretical and Metodological Background. Ph.D. Thesis, Melnikov Permafrost Institute, Yakutsk, Russia, 2001; 359p. (In Russian). [Google Scholar]
- Zykov, Y.D. Geophysical Surveys in Permafrost; Moscow University Press: Moscow, Russia, 2007; 395p. [Google Scholar]
- Sudakova, M.S.; Vladov, M.L. Acoustic properties of water-saturated sand in the temperature range of –20 to +20° S: Experimental results. Part 2. Lomonosov Pedagog. Educ. J. Ser. 4. Geol. 2020, 2, 89–98. [Google Scholar]
- Clairmont, R.; Bedle, H.; Marfurt, K.; Wang, Y. Seismic attribute analyses and attenuation applications for detecting gas hydrate presence. Geosciences 2021, 11, 450. [Google Scholar] [CrossRef]
- Lenz, B.L.; Sawyer, D.E.; Phrampus, B.; Davenport, K.; Long, A. Seismic imaging of seafloor deformation induced by impact from large submarine landslide blocks, Offshore Oregon. Geosciences 2019, 9, 10. [Google Scholar] [CrossRef]
- Baulin, Y.I.; Bogolubov, A.N.; Zykov, Y.D. Geophysical Methods for Engineering Geological Studies of Frozen Fine-Grained Soils: Recommended Practice; Stroiizdat: Moscow, Russia, 1984; 32p. (In Russian) [Google Scholar]
- Sharlov, M.V.; Buddo, I.V.; Misyurkeeva, N.V.; Shelokhov, I.A.; Agafonov, Y.A. Transient electromagnetic surveys for high resolution near-surface exploration: Basics and case studies. First Break 2017, 35, 63–71. [Google Scholar] [CrossRef]
- Sharlov, M.V. An integrated approach to the processing and inversion of TEM data. Devices Syst. Explor. Geophys. 2017, 2, 24–36. [Google Scholar]
- Kaufman, A.A.; Morozova, G.M. Transient Electromagnetic (TEM) Surveys: Theoretical Background; Nauka: Novosibirsk, Russia, 1970; p. 123. (In Russian) [Google Scholar]
- Skorobogatov, V.A.; Stroganov, L.V.; Kopeev, V.D. Geological Structure and Gas and Oil Content in Yamal; Nedra: Moscow, Russia, 2003; pp. 58–76. [Google Scholar]
- Dubikov, G.I.; Ivanova, N.V. Saline frozen soils and their distribution in the territory of the USSR. In Saline Frozen Soils as Foundations of Engineering Structures; Nauka: Moscow, Russia, 1990; pp. 3–9. (In Russian) [Google Scholar]
- Brouchkov, A.V. Saline Permafrost in the Arctic Coast: Origin and Engineering Geological Features. Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 1998. (In Russian). [Google Scholar]
- Streletskaya, I.D. Distribution and Formation of Saline Frozen Soils and Cryopegs of the Northwestern Yamal Peninsula: Case Study of the Bovanenkovo Gas Condensate Field. Candidate Thesis, Research and Development Institute for Construction Engineering, Moscow, Russia, 1991; 21p. (In Russian). [Google Scholar]
- Dubikov, G.I.; Koreisha, M.M. Relict segregated ice in the Yamal Peninsula. Izv. AN SSSR. Ser. Geogr. 1964, 5, 58–65. [Google Scholar]
- Vtyurin, B.I. Ground Ice in the USSR Territory; Nauka: Moscow, Russia, 1985; 214p. (In Russian) [Google Scholar]
- Romanovsky, N.N. Taliks in Permafrost and Their Classification; Bull. Moscow University: Moscow, Russia, 1972; pp. 23–34. (In Russian) [Google Scholar]
- Kritsuk, L.N. Ground Ice of West Siberia; Nauchnyi Mir: Moscow, Russia, 2010; 351p. (In Russian) [Google Scholar]
- Shpolyanskaya, N.A.; Streletskaya, I.D.; Surkov, A.V. Cryolithogenesis in Arctic shelf (recent and relict). Earth’s Cryosphere 2006, 10, 49–60. [Google Scholar]
- Shpolyanskaya, N.A. The permafrost-ecological characteristic of the western sector of the Russian Arctic shelf. Trans. Komi Sci. Cent. Ural. Branch Russ. Acad. Sci. 2014, 3, 12–17. (In Russian) [Google Scholar]
- Leibman, M.O.; Vasiliev, A.A.; Rogov, V.V.; Ingolfsson, O. Massive ground ice studies on Yugorsky peninsula, using crystallographic methods. Kriosfera Zemli 2000, 4, 31–40. [Google Scholar]
- Vasilchuk, A.C.; Vasilchuk, Y.K.; Budantseva, N.A. Pollen spectra of massive ice of Yerkutayakha river valley, southern Yamal Peninsula. In Proceedings of the 4th Conference of Geocryologists of Russia; Moscow, Russia, 7–9 June 2011; Volume 1, pp. 297–305. (In Russian). [Google Scholar]
- Badu, Y.B.; Trofimov, V.T.; Vasil’chuk, Y.C. Main distribution patterns and types of stratified ground ice deposits in the northern West Siberian Plate. In Formation Ice of the Cryolithozone; IM SO USSR Academy of Sciences: Yakutsk, Russia, 1982; pp. 13–24. (In Russian) [Google Scholar]
- French, H.M.; Harry, D.G. Observations on buried glacier ice and massive segregated ice, western Arctic coast, Canada. Permafr. Periglac. Process. 1990, 1, 31–43. [Google Scholar] [CrossRef]
- Belova, N.G. Massive Ice Beds of the South-Western Coast of the Kara Sea; MAKS Press: Moscow, Russia, 2014. [Google Scholar]
- Samokhin, A.A. Cenomanian gas and oil traps in northern West Siberia (types and prediction of location). Neftegazov. Geologiya. Teor. I Prakt. 2011, 6, 1–15. [Google Scholar]
- Misyurkeeva, N.V.; Buddo, I.V.; Agafonov, Y.A.; Smirnov, A.S.; Zharikov, M.G.; Kulinchenko, A.S. 3D TEM and sTEM results from Arctic West Siberia. In Proceedings of the Conference “Geomodel 2017”, Gelendzhik, Russia, 11–14 September 2017. [Google Scholar]
- Misyurkeeva, N.V.; Buddo, I.V.; Shelokhov, I.A.; Vakhromeev, A.G. New data on fluid dynamic processes in the Arctic Zone of West Siberia: Evidence from TEM, STEM Electromagnetic and CMP Seismic Studies. In Proceedings of the Conference Tyumen 2019, Tyumen, Russia, 25–29 March 2019; pp. 1–6. (In Russian). [Google Scholar]
- Misyurkeeva, N.V.; Buddo, I.V.; Smirnov, A.S.; Shelokhov, I.A. Shallow transient electromagnetic method application to study the Yamal Peninsula permafrost zone. In Proceedings of the Conference Geomodel 2020, Gelendzhik, Russia, 7–11 September 2020. [Google Scholar]
- Rybalchenko, V.V.; Trusov, A.I.; Buddo, I.V.; Abramovich, A.V.; Smirnov, A.S.; Misyurkeeva, N.V.; Shelokhov, I.A.; Otsimik, A.A.; Agafonov, Y.A.; Gorlov, I.V.; et al. Integrated studies during petroleum exploration and development: From permafrost mapping to groundwater exploration for drilling and operation. Gazov. Promyshlennost’ 2020, 807, 68–76. [Google Scholar]
- Misurkeeva, N.V.; Buddo, I.V.; Shelokhov, I.A.; Smirnov, A.S.; Agafonov, Y.A.; Nezhdanov, A.A.; Tokareva, O.V. The Structure of The Permafrost Section from High-Density Transient Electromagnetic Method (TEM) Data Within The Yamal Peninsula. In Proceedings of the ProGREss’21, Sochi, Russia, 1–3 November 2021; Volume 2021, pp. 1–6. [Google Scholar] [CrossRef]
- Selyaev, V.A.; Buddo, I.V.; Misyurkeeva, N.V.; Agafonov, Y.A.; Sharlov, M.V. Modern Technique for Studying Permafrost Rocks by Electromagnetic Methods on The Yamal Peninsula. In Proceedings of the ProGREss’21, Sochi, Russia, 1–3 November 2021; Volume 2021, pp. 1–6. [Google Scholar] [CrossRef]
- Misyurkeeva, N.V.; Buddo, I.V.; Kraev, G.N.; Smirnov, A.S.; Nezhdanov, A.A.; Shelokhov, I.A.; Kurchatova, A.A.; Belonosov, A.Y. Periglacial Landforms and Fluid Dynamics in the Permafrost Domain: A Case from the Taz Peninsula, West Siberia. Energies 2022, 15, 2794. [Google Scholar] [CrossRef]
- Buddo, I.; Misyurkeeva, N.; Shelokhov, I.; Chuvilin, E.; Chernikh, A.; Smirnov, A. Imaging Arctic Permafrost: Modeling for Choice of Geophysical Methods. Geosciences 2022, 12, 389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misyurkeeva, N.; Buddo, I.; Shelokhov, I.; Smirnov, A.; Nezhdanov, A.; Agafonov, Y. Thickness and Structure of Permafrost in Oil and Gas Fields of the Yamal Peninsula: Evidence from Shallow Transient Electromagnetic (sTEM) Survey. Water 2024, 16, 2633. https://doi.org/10.3390/w16182633
Misyurkeeva N, Buddo I, Shelokhov I, Smirnov A, Nezhdanov A, Agafonov Y. Thickness and Structure of Permafrost in Oil and Gas Fields of the Yamal Peninsula: Evidence from Shallow Transient Electromagnetic (sTEM) Survey. Water. 2024; 16(18):2633. https://doi.org/10.3390/w16182633
Chicago/Turabian StyleMisyurkeeva, Natalya, Igor Buddo, Ivan Shelokhov, Alexander Smirnov, Alexey Nezhdanov, and Yuri Agafonov. 2024. "Thickness and Structure of Permafrost in Oil and Gas Fields of the Yamal Peninsula: Evidence from Shallow Transient Electromagnetic (sTEM) Survey" Water 16, no. 18: 2633. https://doi.org/10.3390/w16182633
APA StyleMisyurkeeva, N., Buddo, I., Shelokhov, I., Smirnov, A., Nezhdanov, A., & Agafonov, Y. (2024). Thickness and Structure of Permafrost in Oil and Gas Fields of the Yamal Peninsula: Evidence from Shallow Transient Electromagnetic (sTEM) Survey. Water, 16(18), 2633. https://doi.org/10.3390/w16182633