The Effect of Glycerol on Microbial Community in Industrial Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. North Water’s Wastewater Treatment Plant
2.2. Reactor Set-Up
2.3. Experimental Start-Up and Operation
2.4. Chemical Analysis
2.5. High-Throughput 16S-rDNA Gene Sequencing and Analysis
3. Results and Discussion
3.1. pH, COD, and Nitrogen
3.2. Microbial Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henze, M.; Comeau, Y. Biological Wastewater Treatment; IWA Publishing: London, UK, 2008. [Google Scholar]
- Davies, P. The Biological Basis of Wastewater Treatment; Strathkelvin Instruments Ltd.: Motherwell, UK, 2005. [Google Scholar]
- Shi, L.; Liu, N.; Liu, G.; Fang, J. Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021, 9, 2134. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Sun, R.Z.; Wang, Y.; Chen, G.L.; Fu, Y.Y.; Yu, H.Q. Carbon source shaped microbial ecology, metabolism and performance in denitrification systems. Water Res. 2023, 243, 120330. [Google Scholar] [CrossRef] [PubMed]
- Smyk, J.; Ignatowicz, K. The influence of glycerin on nitrogen removal in wastewater treatment with activated sludge. In Proceedings of the International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), Wroclaw, Poland, 2–5 July 2017; E3S Web Conferences. Volume 22. [Google Scholar]
- Salamah, S.; Randall, A. Optimization of Hetrotrophic Denitrification Using Glycerol as a Sustainable External Carbon Substrate. Proceedings 2020, 48, 23. [Google Scholar]
- Keita, V.M.; Gonzalez-Villanueva, M.; Wong, T.S.; Tee, K.L. Microbial Utilization of Glycerol for Biomanufacturing. In Engineering of Microbial Biosynthetic Pathways; Singh, V., Singh, A., Bhargava, P., Joshi, M., Joshi, C., Eds.; Springer: Singapore, 2020. [Google Scholar]
- da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.S.; Gonzalez, R. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, V.K.; Qazi, G.N.; Kumar, A. Gluconobacter oxydans: Its biotechnological applications. J. Mol. Microbiol. Biotechnol. 2001, 3, 445–456. [Google Scholar] [PubMed]
- Negara, M.A.P.; Keesman, K.J.; Euverink, G.J.W.; Jayawardhana, B. NGS-Enriched Activated Sludge Modelling of an Industrial Wastewater Treatment Plant. 2023. Available online: https://www.biorxiv.org/content/10.1101/2023.01.23.523537v1 (accessed on 25 April 2024).
- Clomburg, J.M.; Gonzalez, R. Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends Biotechnol. 2013, 31, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Recio, E.; Aparicio, J.F.; Rumbero, A.; Martín, J.F. Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor-defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology 2006, 152, 3147–3156. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, D.; Onken, U.; Sattler, I.; Zeeck, A. Influence of increased dissolved oxygen concentration on the formation of secondary metabolites by manumycin-producing Streptomyces parvulus. Appl. Microbiol. Biotechnol. 1994, 41, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Borodina, I.; Scholler, C.; Eliasson, A.; Nielsen, J. Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner–Doudoroff pathway. Appl. Environ. Microbiol. 2005, 71, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Verseveld, H.W.V.; Stouthamer, A.H. Electron-Transport Chain and Coupled Oxidative Phosphorylation in Methanol-Grown Paracoccus denitrificans. Arch. Microbiol. 1978, 118, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Krog, A.; Heggeset, T.M.B.; Muller, J.E.N.; Kupper, C.E.; Schneider, O.; Vorholt, J.A.; Ellingsen, T.E.; Brautaset, T. Methylotrophic Bacillus methanolicus Encodes Two Chromosomal and One Plasmid Born NAD+ Dependent Methanol Dehydrogenase Paralogs with Different Catalytic and Biochemical Properties. PLoS ONE 2013, 8, e59188. [Google Scholar] [CrossRef] [PubMed]
- Fatima, T.; Arora, N.K. Plant Growth-Promoting Rhizospheric Microbes for Remediation of Saline Soils. Phyto Rhizo Remediat. Microorg. Sustain. 2019, 9, 121–146. [Google Scholar]
- Kearl, J.; McNary, C.; Lowman, J.S.; Mei, C.; Aanderud, Z.T.; Smith, S.T.; West, J.; Colton, E.; Hamson, M.; Nielsen, B.L. Salt-Tolerant Halophyte Rhizosphere Bacteria Stimulate Growth of Alfalfa in Salty Soil. Front. Microbiol. 2019, 10, 1849. [Google Scholar] [CrossRef] [PubMed]
- Kutvonen, H.; Rajala, P.; Carpén, L.; Bomberg, M. Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Front. Microbiol. 2015, 6, 1079. [Google Scholar] [CrossRef] [PubMed]
- Muck, S.; Corte, D.D.; Clifford, E.L.; Bayer, B.; Herndl, G.J.; Sintes, E. Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone. Front. Microbiol. 2019, 10, 2141. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values |
---|---|
Activated sludge system (Pollution Equivalent) | 35,000 |
Daily peak of contaminated water (Pollution Equivalent) | 60,000 |
Hydraulic capacity (m3/h) | 250 |
Capacity of equalization tank (m3) | 2500 |
Capacity of activated sludge tank (m3) | 6700 |
Component | Concentration (mg/L) |
---|---|
BOD | 1000 |
COD | 2000 |
Cl | 12,000 |
K | 24 |
N | 103 |
Na | 7000 |
NH4 | 23 |
Nkj | 21 |
NO2 | 5 |
NO3 | 66 |
PO4 | 8 |
SO4 | 714 |
TOD | 2200 |
Glycerol | 1600 |
Methanol | 165 |
Influent Solution | Phase 1 | Phase 2 | |||
---|---|---|---|---|---|
Component | Concentration (mg/L) | Component | Concentration (mg/L) | ||
Carbon Influent | Glycerol | 4000 | Glycerol | 6000 | |
Carbon Influent | Methanol | 160 | Methanol | 160 | |
Nitrogen Influent | (NH4)2SO4 | 300 | (NH4)2SO4 | 300 | |
Nitrogen Influent | NaCl | 20,240 | NaCl | 20,240 | |
Nitrogen Influent | KNO3 | 100 | KNO3 | 100 | |
Nitrogen Influent | KH2PO4 | 182 | KH2PO4 | 182 | |
Nitrogen Influent | K2HPO4 3H2O | 278 | K2HPO4 3H2O | 278 | |
Carbon Influent | MgSO4 | 100 | MgSO4 | 100 | |
Nitrogen Influent | Trace Element | 1 | Trace Element | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prawira Negara, M.A.; Jayawardhana, B.; Euverink, G.-J.W. The Effect of Glycerol on Microbial Community in Industrial Wastewater Treatment Plant. Water 2024, 16, 2517. https://doi.org/10.3390/w16172517
Prawira Negara MA, Jayawardhana B, Euverink G-JW. The Effect of Glycerol on Microbial Community in Industrial Wastewater Treatment Plant. Water. 2024; 16(17):2517. https://doi.org/10.3390/w16172517
Chicago/Turabian StylePrawira Negara, Mohamad Agung, Bayu Jayawardhana, and Gert-Jan Willem Euverink. 2024. "The Effect of Glycerol on Microbial Community in Industrial Wastewater Treatment Plant" Water 16, no. 17: 2517. https://doi.org/10.3390/w16172517
APA StylePrawira Negara, M. A., Jayawardhana, B., & Euverink, G. -J. W. (2024). The Effect of Glycerol on Microbial Community in Industrial Wastewater Treatment Plant. Water, 16(17), 2517. https://doi.org/10.3390/w16172517