Spectroscopic Indices Reveal Spatiotemporal Variations of Dissolved Organic Matter in Subtropical Karst Cave Drip Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork
2.3. Laboratory Analysis
2.4. Data Calculation
3. Results
3.1. Meteorological Conditions and Physical Parameters of Cave Drip Water
3.2. DOM Concentrations and Optical Properties in Cave Drip Water
4. Discussion
4.1. Drivers and Origins of DOM in Cave Drip Water
4.2. Response of DOM Characteristics in Cave Drip Water to Regional Climate
4.3. Implications for Regional Climate Influence on DOM in Karst Cave Drip Water
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, H.T.; Tipping, E.; Koprivnjak, J.F.; Miller, M.P.; Cookson, B.; Hamilton-Taylor, J. Freshwater DOM quantity and quality from a two-component model of UV absorbance. Water Res. 2012, 46, 4532–4542. [Google Scholar] [CrossRef]
- Wei, H.B.; Yu, H.B.; Pan, H.W.; Gao, H.J. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta. Environ. Sci. Pollut. Res. Int. 2018, 25, 14197–14205. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.K.; Wu, Y.; Ma, Y.; Li, Y.; Li, D.; Lin, W.; Wang, S.R.; Zhou, C.Y. Spatial gradients and molecular transformations of DOM, DON and DOS in human-impacted estuarine sediments. Environ. Int. 2024, 185, 108518. [Google Scholar] [CrossRef] [PubMed]
- Kellerman, A.M.; Kothawala, D.N.; Dittmar, T.; Tranvik, L.J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nature Geosci. 2015, 8, 454–457. [Google Scholar] [CrossRef]
- Li, P.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [Google Scholar] [CrossRef]
- Liu, D.P.; Yu, H.B.; Gao, H.J.; Feng, H.J.; Zhang, G.C. Applying synchronous fluorescence and UV-vis spectra combined with two-dimensional correlation to characterize structural composition of DOM from urban black and stinky rivers. Environ. Sci. Pollut. Res. Int. 2021, 28, 19400–19411. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, J.; Fu, Q. Structure and biodegradability of dissolved organic matter from Ultisol treated with long-term fertilizations. J. Soil Sediment 2018, 18, 1865–1872. [Google Scholar] [CrossRef]
- Hansell, D.A.; Carlson, C.A. Localized refractory dissolved organic carbon sinks in the deep ocean. Glob. Biogeochem. Cycles 2013, 27, 705–710. [Google Scholar] [CrossRef]
- Evans, C.D.; Futter, M.N.; Moldan, F.; Valinia, S.; Frogbrook, Z.; Kothawala, D.N. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nat. Geosci. 2017, 10, 832–835. [Google Scholar] [CrossRef]
- Amaral, V.; Ortega, T.; Romera-Castillo, C.; Forja, J. Linkages between greenhouse gases (CO2, CH4, and N2O) and dissolved organic matter composition in a shallow estuary. Sci. Total Environ. 2021, 788, 147863. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.D.; Han, J.R.; Shang, Y.X.; Tao, H.; Fang, C.; Lyu, L.L.; Li, S.J.; Hou, J.B.; Liu, G.; Song, K.S. Spatial variations of DOM in a diverse range of lakes across various frozen ground zones in China: Insights into molecular composition. Water Res. 2024, 252, 121204. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Feng, W.Y.; Song, F.H.; Li, T.T.; Guo, W.J.; Wang, B.B.; Wang, H.Y.; Wu, F.C. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation. Limnologica 2019, 77, 125683. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Zhou, L.; Zhang, Y.; Peng, K.; Gong, Z.; Jang, K.-S.; Spencer, R.G.M.; Jeppesen, E.; Brookes, J.D.; et al. Key factors driving dissolved organic matter composition and bioavailability in lakes situated along the Eastern Route of the South-to-North Water Diversion Project, China. Water Res. 2023, 233, 119782. [Google Scholar] [CrossRef] [PubMed]
- Xenopoulos, M.A.; Barnes, R.T.; Boodoo, K.S.; Butman, D.; Catalan, N.; D’Amario, S.C.; Fasching, C.; Kothawala, D.N.; Pisani, O.; Solomon, C.T.; et al. How Humans Alter Dissolved Organic Matter Composition in Freshwater: Relevance for the Earth’s Biogeochemistry. Biogeochemistry 2021, 154, 323–328. [Google Scholar] [CrossRef]
- Ni, M.F.; Li, S.Y.; Santos, I.; Zhang, J.; Luo, J.C. Linking riverine partial pressure of carbon dioxide to dissolved organic matter optical properties in a Dry-hot Valley Region. Sci. Total Environ. 2019, 704, 135353. [Google Scholar] [CrossRef]
- Kellerman, A.M.; Dittmar, T.; Kothawala, D.N.; Tranvik, L.J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 2014, 5, 3804. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.G.M.; Aiken, G.R.; Wickland, K.P.; Striegl, R.G.; Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. 2008, 22, GB4002. [Google Scholar] [CrossRef]
- Kida, M.; Kojima, T.; Tanabe, Y.; Hayashi, K.; Kudoh, S.; Maie, N.; Fujitake, N. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams. Water Res. 2019, 163, 114901. [Google Scholar] [CrossRef] [PubMed]
- Piirsoo, K.; Viik, M.; Koiv, T.; Kairo, K.; Laas, A.; Noges, T.; Pall, P.; Selberg, A.; Toomsalu, L.; Vilbaste, S. Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Vortsjarv, Estonia. J. Hydrol. 2012, 475, 306–313. [Google Scholar] [CrossRef]
- Hernes, P.J.; Benner, R. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. J. Geophys. Res. 2003, 108, 3291. [Google Scholar] [CrossRef]
- Battin, T.J. Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org. Geochem. 1998, 28, 561–569. [Google Scholar] [CrossRef]
- Jaffé, R.; Boyer, J.N.; Lu, X.; Maie, N.; Yang, C.; Scully, N.M.; Mock, S. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem. 2004, 84, 195–210. [Google Scholar] [CrossRef]
- Hur, J.; Williams, M.A.; Schlautman, M.A. Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere 2006, 63, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Ni, M.F.; Li, S.Y. Dynamics and internal links of dissolved carbon in a karst river system: Implications for composition, origin and fate. Water Res. 2022, 226, 119289. [Google Scholar] [CrossRef]
- Fleury, S.; Fleury, S. Karst processes, landforms and issues. In Land Use Policy and Practice on Karst Terrains: Living on Limestone; Springer: Dordrecht, The Netherlands, 2009; pp. 1–18. [Google Scholar]
- Pu, J.B.; Li, J.H.; Khadka, M.B.; Martin, J.B.; Zhang, T.; Yu, S.; Yuan, D.X. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream. Sci. Total Environ. 2017, 579, 1343–1355. [Google Scholar] [CrossRef]
- Yuan, D. The carbon cycle in karst. Z. Geomorphol. 1997, 108, 91–102. [Google Scholar]
- Liu, Z.; Zhao, J. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ. Geol. 2000, 39, 1053–1058. [Google Scholar] [CrossRef]
- Gombert, P. Role of karstic dissolution in global carbon cycle. Glob. Planet. Chang. 2002, 33, 177–184. [Google Scholar] [CrossRef]
- Kowalski, A.S.; Serrano-Ortiz, P.; Janssens, I.A.; Sánchez-Moral, S.; Cuezva, S.; Domingo, F.; Were, A.; Alados-Arboledas, L. Can flux tower research neglect geochemical CO2 exchange? Agric. For. Meteorol. 2008, 148, 1045–1054. [Google Scholar] [CrossRef]
- Serrano-Ortiz, P.; Roland, M.; Sanchez-Moral, S.; Janssens, I.A.; Domingo, F.; Godderis, Y.; Kowalski, A.S. Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives. Agric. For. Meteorol. 2010, 150, 321–329. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the at mospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Martin, J.B.; Brown, A.; Ezell, J. Do carbonate karst terrains affect the global carbon cycle? Acta Carsologica 2013, 42, 187–196. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W. Significance of the carbon sink produced by H2O-carbonate- CO2-aquatic phototroph interaction on land. Sci. Bull. 2015, 60, 182–191. [Google Scholar] [CrossRef]
- Martin, J.B. Carbonate minerals in the global carbon cycle. Chem. Geol. 2017, 449, 58–72. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.F.; Dong, H.; Yan, L.H.; Ding, S.J.; Huang, J.; Gong, X.H.; Su, D. Seasonal variations of cave dripwater hydrogeochemical parameters and δ13CDIC in the subtropical monsoon region and links to regional hydroclimate. Sci. Total Environ. 2023, 881, 163509. [Google Scholar] [CrossRef]
- Yin, S.J.; Liu, Y.F.; Wei, C.H.; Zhu, D.Q. Comparing molecular signatures of dissolved organic matter (DOM) in four large freshwater lakes differing in hydrological connectivity to the Changjiang River. Sci. Total Environ. 2024, 946, 174401. [Google Scholar] [CrossRef]
- Cory, R.M.; Kling, G.W. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr. Lett. 2018, 3, 102–116. [Google Scholar] [CrossRef]
- Shen, Y.; Benner, R. Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean. Limnol. Oceanogr. 2020, 65, 1061–1071. [Google Scholar] [CrossRef]
- Ni, M.F.; Jiang, S.H.; Li, S.Y. Spectroscopic indices trace spatiotemporal variability of dissolved organic matter in a river system with Karst characteristic. J. Hydrol. 2020, 590, 125570. [Google Scholar] [CrossRef]
- Ni, M.F.; Li, S.Y. Optical properties as tracers of riverine dissolved organic matter biodegradation in a headwater tributary of the Yangtze. J. Hydrol. 2020, 582, 124497. [Google Scholar] [CrossRef]
- Mattey, D.P.; Atkinson, T.C.; Barker, J.A.; Fisher, R.; Latin, J.-P.; Durell, R.; Ainsworth, M. Carbon dioxide, ground air and carbon cycling in Gibraltar karst. Geochim. Cosmochim. Acta 2016, 184, 88–113. [Google Scholar] [CrossRef]
- Qin, C.Q.; Li, S.L.; Suan, W.; Yue, F.J.; Wang, Z.J. High-frequency monitoring reveals how hydrochemistry and dissolved carbon respond to rainstorms at a karstic critical zone, Southwestern China. Sci. Total Environ. 2020, 714, 136833. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Li, T.Y. Seasonal and annual changes in soil/cave air pCO2 and the δ13CDIC of cave drip water in response to changes in temperature and rainfall. Appl. Geochem. 2018, 93, 94–101. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, Z.F.; Yan, L.H.; Xiong, Y.; Ding, S.J.; Shi, L.X.; Zhang, H.; Huang, J. Dynamic variation of dissolved organic carbon in karst cave waters in a subtropical climatic regime. J. Earth Syst. Sci. 2023, 132, 132. [Google Scholar] [CrossRef]
- Baker, A.; Ito, E.; Smart, P.L.; Mcewan, R.F. Elevated and variable values of 13C in speleothems in a British cave system. Chem. Geol. 1997, 136, 263–270. [Google Scholar] [CrossRef]
- Tooth, A.; Fairchild, I.J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. J. Hydrol. 2003, 273, 51–68. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, Z.F.; Zhang, H.; Gong, X.H.; Ding, S.J.; Su, D.; Yan, L.H.; Xiong, Y. Spatiotemporal dynamics of dissolved organic matter in subtropical karst cave waters identified by optical properties. Geosphere 2024, 3, 880–894. [Google Scholar] [CrossRef]
- Gong, X.H.; Zhou, Z.F.; Dan, S.; Dong, H.; Yan, L.H.; Ding, S.J.; Wang, X.D.; Zhang, Y. Sulfur-oxygen isotope analysis of SO24− sources in cave dripwater and their influence on the karst carbon cycle. Environ. Res. 2024, 240, 117508. [Google Scholar] [CrossRef]
- Ni, M.F.; Liu, R.; Luo, W.J.; Pu, J.B.; Zhang, J.; Wang, X.D. Unexpected shifts of dissolved carbon biogeochemistry caused by anthropogenic disturbances in karst rivers. Water Res. 2023, 247, 120744. [Google Scholar] [CrossRef]
- Han, B.J.; Chen, L.Y.; Xiao, K.; Chen, R.Y.; Cao, D.; Yu, L.; Li, Y.J.; Tao, S.; Liu, W.X. Characteristics of dissolved organic matter (DOM) in Chinese farmland soils under different climate zone types: A molecular perspective. J. Environ. Manag. 2024, 350, 119695. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Cao, X.H.; Li, S.A.; Li, Z.; Grossart, H.; Ma, H. Human activities-impacted lake dissolved organic matter (DOM) affects phycosphere microbial diversity and DOM diversification via carbon metabolism. J. Environ. Manag. 2024, 367, 122011. [Google Scholar] [CrossRef]
- An, L.L.; Zheng, Z.C.; Li, T.X.; He, S.Q.; Zhang, X.Z.; Wang, Y.D.; Huang, H.G.; Yu, H.Y.; Ye, D.H. Quantity and quality characteristics of DOM loss in sloping cropland under natural rainfall in Southwestern China. Catena 2024, 240, 108000. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, G.H.; Sun, Z.Y.; Liu, F.; Wang, Q.G. The migration and transformation processes of dissolved organic matter in rainwater-drip water-phreatic water of a typical karst spring catchment, in South China. J. Hydrol. 2023, 625, 130077. [Google Scholar] [CrossRef]
- Kubo, A.; Hashihama, F.; Kanda, J.; Horimoto-Miyazaki, N.; Ishimaru, T. Long- term variability of nutrient and dissolved organic matter concentrations in Tokyo Bay between 1989 and 2015. Limnol. Oceanogr. 2019, 64, S209–S222. [Google Scholar] [CrossRef]
- Yu, X.; Shen, F.; Liu, Y. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters: An alternative approach for DOC estimation. Estuar. Coast. Shelf Sci. 2016, 181, 302–311. [Google Scholar] [CrossRef]
- Fichot, C.G.; Benner, R. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 2011, 38, L03610. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Qu, X. Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation. J. Arid Land 2018, 10, 115–128. [Google Scholar] [CrossRef]
- Ding, H.Y.; Su, J.; Sun, Y.Y.; Yu, H.B.; Zheng, M.X.; Xia, B.D. Insight into spatial variations of DOM fractions and its interactions with microbial communities of shallow groundwater in a mesoscale lowland river watershed. Water Res. 2024, 258, 121797. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.; McDermott, F.; Spiro, B. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M. Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A. J. Sediment. Res. 2007, 77, 615–622. [Google Scholar] [CrossRef]
- Jin, J.; Zimmerman, A.R. Abiotic interactions of natural dissolved organic matter and carbonate aquifer rock. Appl. Geochem. 2010, 25, 472–484. [Google Scholar] [CrossRef]
- Huang, J.S.; Yin, H.L.; Houska, T. Enhancing insight into DOM fate in aquatic systems: Introducing the FLOTATION model. Water Res. 2024, 260, 121942. [Google Scholar] [CrossRef]
- Li, M.; Xie, W.; Li, P.; Yin, K.; Zhang, C. Establishing a terrestrial proxy based on fluorescent dissolved organic matter from sediment pore waters in the East China Sea. Water Res. 2020, 182, 116005. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Jiao, R.Y.; Yan, W.J.; Yu, Q.B.; Li, Q.Q.; Zhang, P.P.; Li, Y.Q.; Wang, D.S. Enhanced chemodiversity, distinctive molecular signature and diurnal dynamics of dissolved organic matter in streams of two headwater catchments. Southeastern China. Water Res. 2022, 211, 118052. [Google Scholar] [CrossRef]
- Li, Z.Y.; He, M.Y.; Li, B.K.; Wen, X.Q.; Zhou, J.D.; Cheng, Y.Y.; Zhang, N.; Deng, L. Multi-isotopic composition (Li and B isotopes) and hydrochemistry characterization of the Lakko Co Li-rich salt lake in Tibet, China: Origin and hydrological processes. J. Hydrol. 2024, 630, 130714. [Google Scholar] [CrossRef]
Wet Season | Dry Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Max | Min | Mean | Std. Dev | n | Max | Min | Mean | Std. Dev | |
DOC (mg/L) | 46 | 3.52 | 0.45 | 1.46 | 0.72 | 35 | 4.50 | 0.34 | 1.27 | 0.82 |
a254 (m−1) | 46 | 16.46 | 8.54 | 11.11 | 1.67 | 35 | 13.57 | 7.32 | 10.25 | 1.64 |
a285 (m−1) | 46 | 14.47 | 7.13 | 9.85 | 1.52 | 35 | 12.74 | 6.91 | 9.40 | 1.38 |
a350 (m−1) | 46 | 7.28 | 0.74 | 3.44 | 1.70 | 35 | 6.82 | 0.74 | 4.00 | 1.53 |
E2/E3 | 46 | 3.81 | 1.75 | 2.54 | 0.48 | 35 | 2.95 | 1.63 | 2.21 | 0.38 |
E2/E4 | 46 | 3.67 | 0.93 | 6.01 | 2.10 | 35 | 5.22 | 1.04 | 3.05 | 0.89 |
SR | 46 | 10.73 | 0.01 | 1.37 | 2.28 | 35 | 10.64 | 0.08 | 1.14 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Zhou, Z. Spectroscopic Indices Reveal Spatiotemporal Variations of Dissolved Organic Matter in Subtropical Karst Cave Drip Water. Water 2024, 16, 2438. https://doi.org/10.3390/w16172438
Dong H, Zhou Z. Spectroscopic Indices Reveal Spatiotemporal Variations of Dissolved Organic Matter in Subtropical Karst Cave Drip Water. Water. 2024; 16(17):2438. https://doi.org/10.3390/w16172438
Chicago/Turabian StyleDong, Hui, and Zhongfa Zhou. 2024. "Spectroscopic Indices Reveal Spatiotemporal Variations of Dissolved Organic Matter in Subtropical Karst Cave Drip Water" Water 16, no. 17: 2438. https://doi.org/10.3390/w16172438
APA StyleDong, H., & Zhou, Z. (2024). Spectroscopic Indices Reveal Spatiotemporal Variations of Dissolved Organic Matter in Subtropical Karst Cave Drip Water. Water, 16(17), 2438. https://doi.org/10.3390/w16172438