Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany
Abstract
:1. Introduction
1.1. The Significance of Nitrogen Flux Models
1.2. Challenges in Modelling High-Resolution Agricultural N Budgets
1.3. Study Objective
2. Material and Methods
2.1. Selected Agricultural Structure Determinants in Germany
2.2. Model Input Data
2.3. Municipality-Level N Budget Model
2.3.1. N Soil Surface Budgets
2.3.2. Organic Fertiliser Input
2.3.3. Biological N Fixation
2.3.4. Mineral Fertiliser Application
2.4. Model Evaluation
3. Results
3.1. Overview
3.2. N Inputs from Manure and Digestate
3.3. N Inputs from Biological N Fixation and Other Organic Sources
3.4. Mean Crop N Requirement and N Inputs from Mineral Fertiliser Application
3.5. Total N Input, N Removal and N Surplus
3.6. Comparison of Modelled Mineral Fertilizer Applied with FADN Data
4. Discussion
4.1. Plausibility of Model Results in the Context of Other Literature
4.2. Opportunities and Challenges When Using Farm-Level Administration Data
4.3. Applications in Nutrient Flux Models and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781139080972. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef]
- Jones, L.; Provins, A.; Holland, M.; Mills, G.; Hayes, F.; Emmett, B.; Hall, J.; Sheppard, L.; Smith, R.; Sutton, M.; et al. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst. Serv. 2014, 7, 76–88. [Google Scholar] [CrossRef]
- van Grinsven, H.J.M.; Holland, M.; Jacobsen, B.H.; Klimont, Z.; Sutton, M.A.; Jaap Willems, W. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 2013, 47, 3571–3579. [Google Scholar] [CrossRef] [PubMed]
- de Vries, W.; Schulte-Uebbing, L.; Kros, H.; Voogd, J.C.; Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 2021, 786, 147283. [Google Scholar] [CrossRef]
- McCrackin, M.L.; Harrison, J.A.; Compton, J.E. Future riverine nitrogen export to coastal regions in the United States: Prospects for improving water quality. J. Environ. Qual. 2015, 44, 345–355. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Kunkel, R.; Eysholdt, M.; Nguyen, H.H.; Venohr, M.; Wolters, T.; Zinnbauer, M.; Wendland, F. Modelling Current-State N- and P-Fluxes into Surface Waters in Germany. Water 2024, 16, 1872. [Google Scholar] [CrossRef]
- Liu, X.; Beusen, A.H.W.; van Grinsven, H.J.M.; Wang, J.; van Hoek, W.J.; Ran, X.; Mogollón, J.M.; Bouwman, A.F. Impact of groundwater nitrogen legacy on water quality. Nat. Sustain. 2024, 7, 891–900. [Google Scholar] [CrossRef]
- Yang, C.; Wang, L.; Chen, S.; Li, Y.; Huang, S.; Zeng, Q.; Chen, Y. Nitrate transport velocity data in the global unsaturated zones. Sci. Data 2022, 9, 613. [Google Scholar] [CrossRef]
- Basu, N.B.; van Meter, K.J.; Byrnes, D.K.; van Cappellen, P.; Brouwer, R.; Jacobsen, B.H.; Jarsjö, J.; Rudolph, D.L.; Cunha, M.C.; Nelson, N.; et al. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 2022, 15, 97–105. [Google Scholar] [CrossRef]
- Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive): MSFD. 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/56/oj (accessed on 15 July 2024).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy: WFD. 2000. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 1 January 2020).
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources: Nitrates Directive. 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31991L0676 (accessed on 15 July 2024).
- European Commission. Report from the Commission to the Council and the Parliament on the Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources Based on Member State Reports for the Period 2016–2019. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2021:1000:FIN (accessed on 18 July 2024).
- Strenge, E.; Zoboli, O.; Mehdi-Schulz, B.; Parajka, J.; Schönhart, M.; Krampe, J.; Zessner, M. Regional nitrogen budgets of agricultural production systems in Austria constrained by natural boundary conditions. J. Environ. Manag. 2023, 347, 119023. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Liptzin, D.; Dzurella, K.; Fryjoff-Hung, A.; Hollander, A.; Jensen, V.; King, A.; Kourakos, G.; McNally, A.; Pettygrove, G.S.; et al. Agriculture’s Contribution to Nitrate Contamination of Californian Groundwater (1945–2005). J. Environ. Qual. 2014, 43, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef]
- Ackermann, A.; Mahnkopf, J.; Heidecke, C.; Venohr, M. Reducing agricultural nitrogen inputs in the German Baltic Sea catchment—trends and policy options. Water Sci. Technol. 2016, 74, 1060–1068. [Google Scholar] [CrossRef]
- Schmidt, B.; Kuhn, U.; Trepel, M.; Kreins, P.; Zinnbauer, M.; Eysholdt, M.; Osterburg, B.; Löw, P.; Wendland, F.; Herrmann, F.; et al. Modellansatz zur Bestimmung der Nährstoffbelastung und ihrer Reduktion in allen deutschen Flussgebieten. Wasser Und Abfall 2020, 22, 33–38. [Google Scholar] [CrossRef]
- Umweltbundesamt. Die Wasserrahmenrichtlinie: Gewässer in Deutschland 2021. Fortschritte und Herausforderungen, Dessau-Roßlau. 2022. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf (accessed on 28 April 2023).
- Nawotke, C.; Wacker-Fester, K.; Hoppe, A.; Kape, H.-E.; Hiller, J.; Pöplau, R. Regionalisierte Flächenbilanzen für Stickstoff auf landwirtschaftlichen Nutzflächen in Mecklenburg-Vorpommern: Im Auftrag des Ministeriums für Landwirtschaft und Umwelt Mecklenburg-Vorpommern, Rostock. 2020. Available online: https://www.wrrl-mv.de/static/WRRL/Dateien/Dokumente/Service/Dokumente/2020_Bericht_Regionalisierung_landwirtschaftliche_Stickstoffbilanzen_MV_2012-2017_end.pdf (accessed on 19 July 2024).
- Jacobsen, B.H.; Hansen, A.L. Economic gains from targeted measures related to non-point pollution in agriculture based on detailed nitrate reduction maps. Sci. Total Environ. 2016, 556, 264–275. [Google Scholar] [CrossRef] [PubMed]
- McCrackin, M.L.; Gustafsson, B.G.; Hong, B.; Howarth, R.W.; Humborg, C.; Savchuk, O.P.; Svanbäck, A.; Swaney, D.P. Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture. Reg. Environ. Chang. 2018, 18, 1843–1854. [Google Scholar] [CrossRef]
- Svanbäck, A.; McCrackin, M.L.; Swaney, D.P.; Linefur, H.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C. Reducing agricultural nutrient surpluses in a large catchment—Links to livestock density. Sci. Total Environ. 2019, 648, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Hirt, U.; Kreins, P.; Kuhn, U.; Mahnkopf, J.; Venohr, M.; Wendland, F. Management options to reduce future nitrogen emissions into rivers: A case study of the Weser river basin, Germany. Agric. Water Manag. 2012, 115, 118–131. [Google Scholar] [CrossRef]
- Piniewski, M.; Tattari, S.; Koskiaho, J.; Olsson, O.; Djodjic, F.; Giełczewski, M.; Marcinkowski, P.; Księżniak, M.; Okruszko, T. How effective are River Basin Management Plans in reaching the nutrient load reduction targets? Ambio 2021, 50, 706–722. [Google Scholar] [CrossRef]
- Wendland, F.; Bogena, H.; Goemann, H.; Hake, J.F.; Kreins, P.; Kunkel, R. Impact of nitrogen reduction measures on the nitrogen loads of the river Ems and Rhine (Germany). Phys. Chem. Earth Parts A/B/C 2005, 30, 527–541. [Google Scholar] [CrossRef]
- de Wit, M.; Bendoricchio, G. Nutrient fluxes in the Po basin. Sci. Total Environ. 2001, 273, 147–161. [Google Scholar] [CrossRef]
- Howarth, R.; Swaney, D.; Billen, G.; Garnier, J.; Hong, B.; Humborg, C.; Johnes, P.; Mörth, C.-M.; Marino, R. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 2012, 10, 37–43. [Google Scholar] [CrossRef]
- Blicher-Mathiesen, G.; Andersen, H.E.; Larsen, S.E. Nitrogen field balances and suction cup-measured N leaching in Danish catchments. Agric. Ecosyst. Environ. 2014, 196, 69–75. [Google Scholar] [CrossRef]
- de Notaris, C.; Rasmussen, J.; Sørensen, P.; Olesen, J.E. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ. 2018, 255, 1–11. [Google Scholar] [CrossRef]
- Leip, A.; Britz, W.; Weiss, F.; de Vries, W. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ. Pollut. 2011, 159, 3243–3253. [Google Scholar] [CrossRef]
- EUROSTAT. Nutrient Budgets—Methodology and Handbook: Version 1.02., Luxembourg. 2013. Available online: https://ec.europa.eu/eurostat/documents/2393397/2518760/Nutrient_Budgets_Handbook_%28CPSA_AE_109%29_corrected3.pdf/4a3647de-da73-4d23-b94b-e2b23844dc31 (accessed on 7 January 2022).
- Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds; Howarth, R.W., Ed.; Springer: Dordrecht, The Netherland, 1996; pp. 75–139. ISBN 978-94-009-1776-7. [Google Scholar]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Hong, B.; Swaney, D.P.; McCrackin, M.; Svanbäck, A.; Humborg, C.; Gustafsson, B.; Yershova, A.; Pakhomau, A. Advances in NANI and NAPI accounting for the Baltic drainage basin: Spatial and temporal trends and relationships to watershed TN and TP fluxes. Biogeochemistry 2017, 133, 245–261. [Google Scholar] [CrossRef]
- Wolters, T.; Cremer, N.; Eisele, M.; Herrmann, F.; Kreins, P.; Kunkel, R.; Wendland, F. Checking the Plausibility of Modelled Nitrate Concentrations in the Leachate on Federal State Scale in Germany. Water 2021, 13, 226. [Google Scholar] [CrossRef]
- Özbek, F.Ş.; Leip, A. Estimating the gross nitrogen budget under soil nitrogen stock changes: A case study for Turkey. Agric. Ecosyst. Environ. 2015, 205, 48–56. [Google Scholar] [CrossRef]
- Eriksson, H.; Pastuszak, M.; Löfgren, S.; Mörth, C.-M.; Humborg, C. Nitrogen budgets of the Polish agriculture 1960–2000: Implications for riverine nitrogen loads to the Baltic Sea from transitional countries. Biogeochemistry 2007, 85, 153–168. [Google Scholar] [CrossRef]
- Lassaletta, L.; Romero, E.; Billen, G.; Garnier, J.; García-Gómez, H.; Rovira, J.V. Spatialized N budgets in a large agricultural Mediterranean watershed: High loading and low transfer. Biogeosciences 2012, 9, 57–70. [Google Scholar] [CrossRef]
- Häußermann, U.; Klement, L.; Breuer, L.; Ullrich, A.; Wechsung, G.; Bach, M. Nitrogen soil surface budgets for districts in Germany 1995 to 2017. Environ. Sci. Eur. 2020, 32, 109. [Google Scholar] [CrossRef]
- Wang, X.; Feng, A.; Wang, Q.; Wu, C.; Liu, Z.; Ma, Z.; Wei, X. Spatial variability of the nutrient balance and related NPSP risk analysis for agro-ecosystems in China in 2010. Agric. Ecosyst. Environ. 2014, 193, 42–52. [Google Scholar] [CrossRef]
- Kros, J.; Hutchings, N.J.; Kristensen, I.T.; Kristensen, I.S.; Børgesen, C.D.; Voogd, J.C.; Dalgaard, T.; de Vries, W. A comparison of disaggregated nitrogen budgets for Danish agriculture using Europe-wide and national approaches. Sci. Total Environ. 2018, 643, 890–901. [Google Scholar] [CrossRef] [PubMed]
- Serra, J.; Cordovil, C.M.; Cruz, S.; Cameira, M.R.; Hutchings, N.J. Challenges and solutions in identifying agricultural pollution hotspots using gross nitrogen balances. Agric. Ecosyst. Environ. 2019, 283, 106568. [Google Scholar] [CrossRef]
- Bach, M.; Frede, H.-G. Assessment of agricultural nitrogen balances for municipalities—Example Baden-Wuerttemberg (Germany). Eur. Water Manag. Online 2004. [Google Scholar]
- Batool, M.; Sarrazin, F.J.; Attinger, S.; Basu, N.B.; van Meter, K.; Kumar, R. Long-term annual soil nitrogen surplus across Europe (1850–2019). Sci. Data 2022, 9, 612. [Google Scholar] [CrossRef]
- Mathivanan, G.P.; Eysholdt, M.; Zinnbauer, M.; Rösemann, C.; Fuß, R. New N2O emission factors for crop residues and fertiliser inputs to agricultural soils in Germany. Agric. Ecosyst. Environ. 2021, 322, 107640. [Google Scholar] [CrossRef]
- Eysholdt, M.; Kunkel, R.; Rösemann, C.; Wendland, F.; Wolters, T.; Zinnbauer, M.; Fuß, R. A model-based estimate of nitrate leaching in Germany for GHG reporting. J. Plant Nutr. Soil Sci. 2022, 185, 850–863. [Google Scholar] [CrossRef]
- Klein, K.; Ogan, S.; Rottstock, T.; Thönnshof, C. MonViA Indikatorenbericht 2024—Bundesweites Monitoring der biologischen Vielfalt in Agrarlandschaften, Bonn. 2024. Available online: https://research.wur.nl/en/publications/monvia-indikatorenbericht-2024-bundesweites-monitoring-der-biolog (accessed on 23 July 2024).
- Sachverständigenrat für Umweltfragen. Stickstoff: Lösungsstrategien für ein Drängendes Umweltproblem; Sondergutachten: Berlin, Germany, 2015. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz; Bundesministerium für Ernährung und Landwirtschaft. Nitratbericht 2024. 2024. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Binnengewaesser/nitratbericht_2024_bf.pdf (accessed on 18 July 2024).
- European Court of Justice. European Commission against Federal Republic of Germany. Infringement Proceedings—Directive 91/676/EEC. 2018. Available online: https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:62016CJ0543 (accessed on 5 April 2022).
- Henrichsmeyer, W.; Cypris, C.; Löhe, W.; Meudt, M.; Sander, R.; von Sothen, F. Entwicklung eines gesamtdeutschen Agrarsektormodells. In Endbericht zum Kooperationsprojekt "Entwicklung des Gesamtdeutschen Agrarsektormodells RAUMIS96"; Universität Bonn, Bundesforschungsanstalt für Landwirtschaft, Eds.; Braunschweig: Bonn, Germany, 1996. [Google Scholar]
- Kreins, P.; Behrendt, H.; Gömann, H.; Heidecke, C.; Hirt, U.; Kunkel, R.; Seidel, K.; Tetzlaff, B.; Wendland, F. Analyse von Agrar- und Umweltmaßnahmen im Bereich des Landwirtschaftlichen Gewässerschutzes vor dem Hintergrund der EG-Wasserrahmenrichtlinie in der Flussgebietseinheit Weser; Landbauforschung Sonderheft No. 336: Braunschweig, Germany, 2009. [Google Scholar]
- Landwirtschaftskammer Nordrhein-Westfalen. Nährstoffbericht NRW 2021, Münster. 2021. Available online: https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/pdf/naehrstoffbericht-2021.pdf (accessed on 17 November 2021).
- Bach, M.; Knoll, L.; Kilian, J.; Breuer, L. Nicht-Agrarbedingte im Vergleich zu den Agrarbedingten Einflussfaktoren auf die Nitratbelastung von Grundwasserkörpern in Hessen; Justus-Liebig-Universität Gießen: Gießen, Germany, 2021. [Google Scholar]
- Landwirtschaftskammer Niedersachsen. Nährstoffbericht für Niedersachsen 2019/2020, Oldenburg. 2021. Available online: https://www.duengebehoerde-niedersachsen.de/duengebehoerde/thema/684_Naehrstoffbericht (accessed on 16 January 2022).
- Zinnbauer, M.; Eysholdt, M.; Henseler, M.; Kreins, P.; Herrmann, F.; Kunkel, R.; Nguyen, H.; Tetzlaff, B.; Venohr, M.; Wolters, T.; et al. Quantifizierung Aktueller und Zukünftiger Nährstoffeinträge und Handlungsbedarfe für ein Deutschlandweites Nährstoffmanagement—AGRUM-DE; Thünen-Report No. 108: Braunschweig, Germany, 2023; Available online: https://www.thuenen.de/media/publikationen/thuenen-report/Thuenen_Report_108.pdf (accessed on 22 November 2023).
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Trommler, M.; Reinholz, T.; Völler, K.; Beil, M.; Beyrich, W. Anlagenbestand Biogas und Biomethan—Biogaserzeugung und-nutzung in Deutschland; DBFZ Report No. 30: Leipzig, Leipzig, 2017; Available online: https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_30.pdf (accessed on 6 January 2020).
- Gömann, H.; Julius, C.; Kreins, P. Quantifying Impacts of Different Agri-environmental Policies on the Environment Using the Regional Agri-environmental Information System RAUMIS. In Environmental Communication in the Information Society: Proceedings of the 16th International Conference Informatics for Environmental Protection, September 25–27, 2002, University of Technology, Vienna, Austria; Pillmann, W., Ed.; ISEP International Society for Environmental Protection: Vienna, Austria, 2002; ISBN 3-9500036-7-3. [Google Scholar]
- Henseler, M.; Dechow, R. Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model. Agric. Syst. 2014, 124, 70–82. [Google Scholar] [CrossRef]
- Röder, N.; Henseler, M.; Liebersbach, H.; Kreins, P.; Osterburg, B. Evaluation of land use based greenhouse gas abatement measures in Germany. Ecol. Econ. 2015, 117, 193–202. [Google Scholar] [CrossRef]
- Röder, N.; Gocht, A. Municipality Disaggregation of Germany’s Agricultural Sector Model RAUMIS: Paper Prepared for the 122nd EAAE Seminar. 2011. Available online: https://literatur.thuenen.de/digbib_extern/dn048083.pdf (accessed on 3 October 2023).
- Bayerische Landesanstalt für Landwirtschaft. Basisdaten: Stand: Januar 2019. 2019. Available online: https://www.lfl.bayern.de/mam/cms07/iab/dateien/basisdaten_20190131.pdf (accessed on 6 December 2019).
- Kreins, P.; Herrmann, S.; Kunkel, R.; Wendland, F. Integrated Agricultural and Hydrological Modeling within an Intensive Livestock Region. In Ecological Economics of Sustainable Watershed Management; Erickson, J.D., Messner, F., Ring, I., Eds.; Emerald Group Publishing: Amsterdam, The Netherland, 2007; pp. 113–142. ISBN 9780762314485. [Google Scholar]
- Elsäßer, M. Düngung von Wiesen und Weiden. Merkblätter Für Die Umweltgerechte Landbewirtschaftung 2005, 13, 1–8. [Google Scholar]
- Elsäßer, M. N-Bindung von Leguminosen auf Grünland, Personal communication. 2020.
- Krüll, H. Erstellung einer Stickstoffbilanz in den Kreisen der BRD. In Endbericht Zum Forschungsvorhaben Wirkungen Agrarpolitischer Maßnahmen Auf Ziele von Umwelt-, Natur-Und Landschaftsschutz; Rheinische Friedrich-Wilhelms-Universität zu Bonn: Bonn, Germany, 1988; pp. 8–39. [Google Scholar]
- Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der Guten Fachlichen Praxis Beim Düngen: DüV. 2017. Available online: https://www.gesetze-im-internet.de/d_v_2017/BJNR130510017.html (accessed on 23 August 2024).
- Frick, H.; Oberson, A.; Frossard, E.; Bünemann, E.K. Leached nitrate under fertilised loamy soil originates mainly from mineralisation of soil organic N. Agric. Ecosyst. Environ. 2022, 338, 108093. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Produzierendes Gewerbe—Düngemittelversorgung: Fachserie 4 Reihe 8.2. 2021. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Industrie-Verarbeitendes-Gewerbe/Publikationen/Downloads-Fachstatistiken/duengemittelversorgung-jahr-2040820217004.html (accessed on 6 December 2021).
- Löw, P.; Osterburg, B.; Klages, S. Comparison of regulatory approaches for determining application limits for nitrogen fertilizer use in Germany. Environ. Res. Lett. 2021, 16, 55009. [Google Scholar] [CrossRef]
- Hansen, H.; Bahta, S.; Offermann, F. Statistical Usefulness of the EU FADN Database for Production Cost Estimations; FACEPA Deliverable D1.3: Braunschweig, Germany, 2009. [Google Scholar]
- Haß, M.; Banse, M.; Deblitz, C.; Freund, F.; Geibel, I.; Gocht, A.; Kreins, P.; Laquai, V.; Offermann, F.; Osterburg, B.; et al. Thünen-Baseline 2020–2030 Agrarökonomische Projektionen für Deutschland; Thünen Report No. 82: Braunschweig, Germany, 2020. [Google Scholar]
- Wolters, T.; McNamara, I.; Tetzlaff, B.; Wendland, F. Germany-Wide High-Resolution Water Balance Modelling to Characterise Runoff Components as Input Pathways for the Analysis of Nutrient Fluxes. Water 2023, 15, 3468. [Google Scholar] [CrossRef]
- Herrmann, F.; Berthold, G.; Fritsche, J.-G.; Kunkel, R.; Voigt, H.-J.; Wendland, F. Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: The state of Hesse case study, Germany. Environ. Earth Sci 2012, 67, 2239–2250. [Google Scholar] [CrossRef]
- van Meter, K.J.; Basu, N.B. Time lags in watershed-scale nutrient transport: An exploration of dominant controls. Environ. Res. Lett. 2017, 12, 84017. [Google Scholar] [CrossRef]
- Salomon, M.; Schmid, E.; Volkens, A.; Hey, C.; Holm-Müller, K.; Foth, H. Towards an integrated nitrogen strategy for Germany. Environ. Sci. Policy 2016, 55, 158–166. [Google Scholar] [CrossRef]
- Dämmgen, U.; Lüttich, M.; Döhler, H.; Eurich-Menden, B.; Osterburg, B. GAS-EM—A Procedure to Calculate Gaseous Emissions from Agriculture. Landbauforsch. Völkenrode 2002, 52, 19–42. [Google Scholar]
- Schwieder, M.; Wesemeyer, M.; Frantz, D.; Pfoch, K.; Erasmi, S.; Pickert, J.; Nendel, C.; Hostert, P. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 2022, 269, 112795. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 4 August 2024).
Input Data | Data Sources | Spatial Resolution | Coverage | Years | |
---|---|---|---|---|---|
Land use | All crops | IACS | Farm level with single field geocoordinates | National | 2014–2016 |
Vegetables, viniculture | Thünen-Agraratlas | Municipality level | National | 2016 | |
Animal husbandry | Cattle | IACS, ISA | Farm level | National (IACS) and partial (ISA) | 2014–2016 |
Pigs, poultry | Thünen-Agraratlas | Municipality level | National | 2016 | |
Small ruminants, other animals | IACS | Farm level | National | 2014–2016 | |
Biogas production | Plant type, capacity, energy production | Network operator data, plant register | Single-plant data, including geocoordinates | National | 2014–2016 |
Substrate input | Daniel-Gromke et al. [62], federal state reports | Varying | National | Varying | |
Manure transportation | Manure transportation databases | Municipality level | Partial | 2014–2016 | |
Other manure transportation records | NUTS-3 level and lower | Partial | 2014–2016 | ||
Yields | Federal statistical office (www.destatis.de, accessed on 15 July 2024) | NUTS-3 | National | 2014–2016 | |
Sewage sludge | Single-field data | Federal state sewage sludge application registers | Field level | Partial | 2014–2016 |
Aggregated data | Federal state reports | Varying | National | Varying | |
Compost | Federal state statistical offices | NUTS-1 | National | Varying |
Distribution of Municipality Results | Total N Budget | ||||||||
---|---|---|---|---|---|---|---|---|---|
Min | q05 | Mean | Median | q95 | Max | SD | Total | Mean (Area Weighted) | |
kg N ha−1 UAA | kt N | kg N ha−1 UAA | |||||||
Input total | 12.8 | 100.9 | 195.3 | 190.3 | 301.4 | 1392.9 | 62.7 | 3334.6 | 201.8 |
Mineral fertiliser | 0.2 | 32.9 | 101.1 | 101.1 | 165.3 | 432.6 | 41.4 | 1693.1 | 102.4 |
Manure | 0.0 | 0.0 | 48.8 | 37.5 | 139.3 | 567.7 | 46.8 | 854.2 | 51.7 |
Digestate | 0.0 | 0.0 | 29.1 | 0.3 | 142.8 | 1341.4 | 48.5 | 531.6 | 32.2 |
Compost | 0.0 | 0.1 | 1.9 | 1.6 | 4.3 | 8.2 | 1.4 | 34.3 | 2.1 |
Sewage sludge | 0.0 | 0.0 | 1.1 | 0.3 | 4.7 | 115.7 | 2.6 | 20.8 | 1.3 |
N fixation | 0.0 | 1.9 | 11.8 | 10.5 | 25.9 | 117.0 | 8.1 | 176.1 | 10.7 |
Seed | 0.0 | 0.0 | 1.4 | 1.4 | 2.4 | 4.3 | 0.7 | 24.5 | 1.5 |
Removal | 2.6 | 75.7 | 140.3 | 138.5 | 214.7 | 455.1 | 42.0 | 2371.1 | 143.5 |
Surplus | 0.8 | 20.9 | 55.0 | 50.4 | 98.8 | 1066.0 | 28.5 | 963.5 | 58.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinnbauer, M.; Brandes, E.; Eysholdt, M.; Henseler, M.; Löw, P. Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany. Water 2024, 16, 2376. https://doi.org/10.3390/w16172376
Zinnbauer M, Brandes E, Eysholdt M, Henseler M, Löw P. Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany. Water. 2024; 16(17):2376. https://doi.org/10.3390/w16172376
Chicago/Turabian StyleZinnbauer, Maximilian, Elke Brandes, Max Eysholdt, Martin Henseler, and Philipp Löw. 2024. "Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany" Water 16, no. 17: 2376. https://doi.org/10.3390/w16172376
APA StyleZinnbauer, M., Brandes, E., Eysholdt, M., Henseler, M., & Löw, P. (2024). Modelling High Resolution Agricultural Nitrogen Budgets: A Case Study for Germany. Water, 16(17), 2376. https://doi.org/10.3390/w16172376