A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Identification and Mapping of Rock Glaciers
3.3. Classification of Rock Glaciers
3.4. Rock Glacier Water Storage Assessment
3.5. Uncertainty Assessment
4. Results
4.1. Rock Glacier Inventory
4.2. Rock Glacier Classification
4.3. Rock Glacier Topography
4.4. Rock Glacier Water Storage
4.5. Uncertainty Analysis
5. Discussion
5.1. Rock Glacier Inventory and Topographic Distribution
5.2. Water Storage Estimation
5.3. Impacts of Climate Change on Rock Glaciers
5.4. Uncertainty
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, S.; Ramanathan, A.L.; Linda, A.; Pottakkal, J.G.; Singh, V.B.; Angchuk, T. Glacier Mass Balance and Its Significance on the Water Resource Management in the Western Himalayas. In Management of Water, Energy and Bio-Resources in the Era of Climate Change: Emerging Issues and Challenges; Springer: Cham, Switzerland, 2015; pp. 73–83. [Google Scholar]
- Kaser, G.; Großhauser, M.; Marzeion, B. Contribution Potential of Glaciers to Water Availability in Different Climate Regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- RGIK. Towards Standard Guidelines for Inventorying Rock Glaciers: Baseline Concepts, Version 4.2.2 13; IPA Action Group Rock Glacier Inventories and Kinematics: Attica, Greece, 2022. [Google Scholar]
- Nüsser, M.; Schmidt, S. Glacier Changes on the Nanga Parbat 1856–2020: A Multi-Source Retrospective Analysis. Sci. Total Environ. 2021, 785, 147321. [Google Scholar] [CrossRef] [PubMed]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Spatial and Temporal Dynamics of Aufeis in the Tso Moriri Basin, Eastern Ladakh, India. Permafr. Periglac. Process. 2023, 34, 81–93. [Google Scholar] [CrossRef]
- Bolch, T.; Shea, J.M.; Liu, S.; Azam, F.M.; Gao, Y.; Gruber, S.; Immerzeel, W.W.; Kulkarni, A.; Li, H.; Tahir, A.A.; et al. Status and change of the cryosphere in the extended Hindu Kush Himalaya region. In The Hindu Kush Himalaya Assessment; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and Future Sea-Level Change from the Surface Mass Balance of Glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, H.; Cheng, Z.; He, Y.; Zheng, X. Identifying the Impacts of Land Use Landscape Pattern and Climate Changes on Streamflow from Past to Future. J. Environ. Manag. 2023, 345, 118910. [Google Scholar] [CrossRef] [PubMed]
- Bhambri, R.; Schmidt, S.; Chand, P.; Nüsser, M.; Haritashya, U.; Sain, K.; Tiwari, S.K.; Yadav, J.S. Heterogeneity in Glacier Thinning and Slowdown of Ice Movement in the Garhwal Himalaya, India. Sci. Total Environ. 2023, 875, 162625. [Google Scholar] [CrossRef]
- Rashid, I.; Abdullah, T.; Romshoo, S.A. Explaining the Natural and Anthropogenic Factors Driving Glacier Recession in Kashmir Himalaya, India. Environ. Sci. Pollut. Res. 2022, 30, 29942–29960. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Abdullah, T.; Rashid, I.; Bahuguna, I.M. Explaining the Differential Response of Glaciers across Different Mountain Ranges in the North-Western Himalaya, India. Cold Reg. Sci. Technol. 2022, 196, 103515. [Google Scholar] [CrossRef]
- Kamp, U.; Bolch, T.; Olsenholler, J. Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (DEMs) from ASTER Remote Sensing Data and Contour Maps. Geocarto Int. 2005, 20, 23–33. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers in the Trans-Himalaya of Ladakh over the Past Five Decades (1969–2016). Geosciences 2017, 7, 27. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arctic Antarct. Alp. Res. 2012, 44, 107–121. [Google Scholar] [CrossRef]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and Global Projections of Twenty-First Century Glacier Mass Changes in Response to Climate Scenarios from Global Climate Models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. A New Model for Global Glacier Change and Sea-Level Rise. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef]
- Rasul, G. Food, Water, and Energy Security in South Asia: A Nexus Perspective from the Hindu Kush Himalayan Region☆. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Dar, R.A.; Rashid, I.; Marazi, A.; Ali, N.; Zaz, S.N. Implications of Shrinking Cryosphere Under Changing Climate on the Streamflows in the Lidder Catchment in the Upper Indus Basin, India. Arctic Antarct. Alp. Res. 2015, 47, 627–644. [Google Scholar] [CrossRef]
- Shannon, S.; Smith, R.; Wiltshire, A.; Payne, T.; Huss, M.; Betts, R.; Caesar, J.; Koutroulis, A.; Jones, D.; Harrison, S. Global Glacier Volume Projections under High-End Climate Change Scenarios. Cryosphere 2019, 13, 325–350. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022.
- Kraaijenbrink, P.D.; Bierkens, M.F.; Lutz, A.F.; Immerzeel, W.W. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia’s Glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Marazi, A. Impact of Climate Change on Snow Precipitation and Streamflow in the Upper Indus Basin Ending Twenty-First Century. Clim. Chang. 2022, 170, 6. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock Glaciers and Mountain Hydrology: A Review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, N.; Xu, H.; Yi, C.; Wang, N.; Zhang, L. Rock Glaciers in the Gangdise Mountains, Southern Tibetan Plateau: Morphology and Controlling Factors. CATENA 2022, 218, 106561. [Google Scholar] [CrossRef]
- Azócar, G.F.; Brenning, A. Hydrological and Geomorphological Significance of Rock Glaciers in the Dry Andes, Chile (27–33 S). Permafr. Periglac. Process. 2010, 21, 42–53. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain Rock Glaciers Contain Globally Significant Water Stores. Sci. Rep. 2018, 8, 2834, Erratum in Sci. Rep. 2021, 11, 20997. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Shannon, S.; Betts, R.A. Rock Glaciers Represent Hidden Water Stores in the Himalaya. Sci. Total Environ. 2021, 793, 145368. [Google Scholar] [CrossRef] [PubMed]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, R.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S.; et al. Permafrost Creep and Rock Glacier Dynamics. Permafr. Periglac. Process. 2006, 7, 189–214. [Google Scholar] [CrossRef]
- Harrison, S.; Jones, D.; Anderson, K.; Shannon, S.; Betts, R.A. Is Ice in the Himalayas More Resilient to Climate Change than We Thought? Geogr. Ann. Ser. A Phys. Geogr. 2021, 103, 1–7. [Google Scholar] [CrossRef]
- Schrott, L. Some geomorphological-hydrological aspects of rock glaciers in the Andes (San Juan, Argentina). Z. Geomorphol. 1996, 104, 161–173. [Google Scholar]
- Millar, C.I.; Westfall, R.D. Rock Glaciers and Related Periglacial Landforms in the Sierra Nevada, CA, USA; Inventory, Distribution and Climatic Relationships. Quat. Int. 2008, 188, 90–104. [Google Scholar] [CrossRef]
- Shen, Y.J.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of Historical and Projected Future Climatic and Hydrological Changes in Mountainous Semiarid Xinjiang. CATENA 2019, 187, 104343. [Google Scholar] [CrossRef]
- Jansson, P.; Hock, R.; Schneider, T. The Concept of Glacier Storage: A Review. J. Hydrol. 2003, 282, 116–129. [Google Scholar] [CrossRef]
- Irvine-Fynn, T.D.; Hodson, A.J.; Moorman, B.J.; Vatne, G.; Hubbard, A.L. Polythermal Glacier Hydrology: A Review. Rev. Geophys. 2011, 49. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Fayaz, M.; Meraj, G.; Bahuguna, I.M. Satellite-Observed Glacier Recession in the Kashmir Himalaya, India, from 1980 to 2018. Environ. Monit. Assess. 2020, 192, 597. [Google Scholar] [CrossRef] [PubMed]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Distribution and Relevance of Aufeis (Icing) in the Upper Indus Basin. Sci. Total Environ. 2021, 780, 146604. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.O.; Baral, P.; Gruber, S.; Shahi, S.; Shrestha, T.; Stumm, D.; Wester, P. Assessment of Permafrost Distribution Maps in the Hindu Kush Himalayan Region Using Rock Glaciers Mapped in Google Earth. Cryosphere 2015, 9, 2089–2099. [Google Scholar] [CrossRef]
- Bolch, T.; Gorbunov, A.P. Characteristics and Origin of Rock Glaciers in Northern Tien Shan (Kazakhstan/Kyrgyzstan). Permafr. Periglac. Process. 2014, 25, 320–332. [Google Scholar] [CrossRef]
- Hewitt, K. Glaciers of the Karakoram Himalaya. In Encyclopedia of Snow, Ice and Glaciers; Springer: Dordrecht, The Netherlands, 2014; pp. 429–436. [Google Scholar]
- Owen, L.A.; England, J. Observations on Rock Glaciers in the Himalayas and Karakoram Mountains of Northern Pakistan and India. Geomorphology 1998, 26, 199–213. [Google Scholar] [CrossRef]
- Shroder, J.F.; Bishop, M.P.; Copland, L.; Sloan, V.F. Debris-covered Glaciers and Rock Glaciers in the Nanga Parbat Himalaya, Pakistan. Geogr. Ann. Ser. A Phys. Geogr. 2000, 82, 17–31. [Google Scholar] [CrossRef]
- Allen, S.K.; Fiddes, J.; Linsbauer, A.; Randhawa, S.S.; Saklani, B.; Salzmann, N. Permafrost Studies in Kullu District, Himachal Pradesh. Curr. Sci. 2016, 111, 550–553. [Google Scholar] [CrossRef]
- Regmi, D. Rock Glacier Distribution and the Lower Limit of Discontinuous Mountain Permafrost in the Nepal Himalaya. In Proceedings of the Ninth International Conference on Permafrost (NICOP), Fairbanks, Alaska, 29 June–3 July 2008; Volume 29, pp. 1475–1480. [Google Scholar]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.F.; Scherer, D.; Maussion, F.; Huintjes, E.; Schneider, C. A Glacier Inventory for the Western Nyainqentanglha Range and the Nam Co Basin, Tibet, and Glacier Changes 1976–2009. Cryosphere 2010, 4, 419–433. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Shukla, A.; Arora, M.K.; Gupta, R.P. Synergistic Approach for Mapping Debris-Covered Glaciers Using Optical–Thermal Remote Sensing Data with Inputs from Geomorphometric Parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Brenning, A. Benchmarking Classifiers to Optimally Integrate Terrain Analysis and Multispectral Remote Sensing in Automatic Rock Glacier Detection. Remote Sens. Environ. 2008, 113, 239–247. [Google Scholar] [CrossRef]
- Casassa, G.; Smith, K.; Rivera, A.; Araos, J.; Schnirch, M.; Schneider, C. Inventory of Glaciers in Isla Riesco, Patagonia, Chile, Based on Aerial Photography and Satellite Imagery. Ann. Glaciol. 2002, 34, 373–378. [Google Scholar] [CrossRef]
- Scotti, R.; Brardinoni, F.; Alberti, S.; Frattini, P.; Crosta, G.B. A Regional Inventory of Rock Glaciers and Protalus Ramparts in the Central Italian Alps. Geomorphology 2013, 186, 136–149. [Google Scholar] [CrossRef]
- Rangecroft, S.; Harrison, S.; Anderson, K.; Magrath, J.; Castel, A.P.; Pacheco, P. A First Rock Glacier Inventory for the Bolivian Andes. Permafr. Periglac. Process. 2014, 25, 333–343. [Google Scholar] [CrossRef]
- Stumm, D.; Schmid, M.; Gruber, S.; Baral, P.; Shahi, S.; Shrestha, T.; Wester, P. Manual for Mapping Rock Glaciers in Google Earth; International Centre for Integrated Mountain Development ICIMOD: Kathmandu, Nepal, 2015. [Google Scholar]
- Charbonneau, A.A.; Smith, D.J. An Inventory of Rock Glaciers in the Central British Columbia Coast Mountains, Canada, from High Resolution Google Earth Imagery. Arctic Antarct. Alp. Res. 2018, 50, 1489026. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Selley, H.L.; Wood, J.L.; Betts, R.A. The Distribution and Hydrological Significance of Rock Glaciers in the Nepalese Himalaya. Glob. Planet. Change 2018, 160, 123–142. [Google Scholar] [CrossRef]
- Ran, Z.; Liu, G. Rock Glaciers in Daxue Shan, South-Eastern Tibetan Plateau: An Inventory, Their Distribution, and Their Environmental Controls. Cryosphere 2018, 12, 2327–2340. [Google Scholar] [CrossRef]
- Pandey, P. Inventory of Rock Glaciers in Himachal Himalaya, India Using High-Resolution Google Earth Imagery. Geomorphology 2019, 340, 103–115. [Google Scholar] [CrossRef]
- Majeed, Z.; Mehta, M.; Ahmad, M.; Mishra, R. Active rock glaciers of Jhelum basin, Kashmir Himalaya, India. Indian J. Geosci. 2022, 76, 107–124. [Google Scholar]
- Remya, S.N.; Ghosh, T.; Agarwal, V.; Majeed, Z.; Govindha Raj K, B.; Sharma, A.; Kulkarni, A.V.; Ahmad Mukhtar, M.; Mishra, R. A Framework to Identify Rock Glaciers and Model Mountain Permafrost in the Jhelum Basin, Kashmir Himalaya, India. Earth Sp. Sci. 2024, 11, e2023EA003170. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rafiq, M.; Rashid, I. Spatio-Temporal Variation of Land Surface Temperature and Temperature Lapse Rate over Mountainous Kashmir Himalaya. J. Mt. Sci. 2018, 15, 563–576. [Google Scholar] [CrossRef]
- Ali, I.; Shukla, A.; Romshoo, S.A. Assessing Linkages between Spatial Facies Changes and Dimensional Variations of Glaciers in the Upper Indus Basin, Western Himalaya. Geomorphology 2017, 284, 115–129. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A.; Abdullah, T. The Recent Deglaciation of Kolahoi Valley in Kashmir Himalaya, India in Response to the Changing Climate. J. Asian Earth Sci. 2017, 138, 38–50. [Google Scholar] [CrossRef]
- Dimri, A.P.; Mohanty, U.C. Simulation of Mesoscale Features Associated with Intense Western Disturbances over Western Himalayas. Meteorol. Appl. J. Forecast. Pract. Appl. Train. Tech. Model. 2009, 16, 289–308. [Google Scholar] [CrossRef]
- Mushtaq, F.; Pandey, A.C. Assessment of Land Use/Land Cover Dynamics Vis-à-Vis Hydrometeorological Variability in Wular Lake Environs Kashmir Valley, India Using Multitemporal Satellite Data. Arab. J. Geosci. 2014, 7, 4707–4715. [Google Scholar] [CrossRef]
- Zaz, S.N.; Romshoo, S.A.; Krishnamoorthy, R.T.; Viswanadhapalli, Y. Analyses of Temperature and Precipitation in the Indian Jammu and Kashmir Region for the 1980–2016 Period: Implications for Remote Influence and Extreme Events. Atmos. Chem. Phys. 2019, 19, 15–37. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Abdullah, T.; Bhat, M.H. Evaluation of the Global Glacier Inventories and Assessment of Glacier Elevation Changes over North-Western Himalaya. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–45. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of Vertical Accuracy of Open Source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205–217. [Google Scholar] [CrossRef]
- Paul, O.J.; Romshoo, S.A.; Dar, R.A.; Kumar, P.; Dhal, S.P.; Chopra, S. Paleo-Glacial Reconstruction of the Thajwas Glacier in the Kashmir Himalaya Using 10Be Cosmogenic Radionuclide Dating. Geosci. Front. 2022, 13, 101432. [Google Scholar] [CrossRef]
- Paul, F.; Frey, H.; Le Bris, R. A New Glacier Inventory for the European Alps from Landsat TM Scenes of 2003: Challenges and Results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the Suitability of the SRTM DEM and ASTER GDEM for the Compilation of Topographic Parameters in Glacier Inventories. Int. J. Appl. Earth Obs. Geoinf. 2011, 18, 480–490. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.; Guo, Z.; Chen, A. Limitations in Identifying the Equilibrium-Line Altitude from the Optical Remote-Sensing Derived Snowline in the Tien Shan, China. J. Glaciol. 2014, 60, 1093–1100. [Google Scholar]
- Haireti, A.; Tateishi, R.; Alsaaideh, B.; Gharechelou, S. Multi-Criteria Technique for Mapping of Debris-Covered and Clean-Ice Glaciers in the Shaksgam Valley Using Landsat TM and ASTER GDEM. J. Mt. Sci. 2016, 13, 703–714. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Shangguan, D.; Yang, J. Novel Machine Learning Method Integrating Ensemble Learning and Deep Learning for Mapping Debris-Covered Glaciers. Remote Sens. 2021, 13, 2595. [Google Scholar] [CrossRef]
- Kääb, A.; Weber, M. Development of Transverse Ridges on Rock Glaciers: Field Measurements and Laboratory Experiments. Permafr. Periglac. Process. 2004, 15, 379–391. [Google Scholar] [CrossRef]
- Baroni, C.; Carton, A.; Seppi, R. Distribution and behaviour of rock glaciers in the Adamello–Presanella Massif (Italian Alps). Permafr. Periglac. Process. 2004, 15, 243–259. [Google Scholar] [CrossRef]
- Haeberli, W.; Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers. Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrol. und Glaziologie an der ETH Zurich. 1985, Nr 77. Available online: https://www.researchgate.net/profile/Wilfried-Haeberli/publication/303207487_Creep_of_mountain_permafrost_Internal_structure_and_flow_of_alpine_rock_glaciersmitteilungen_Der_versuchsanstalt_fur_wasserbau/links/5a04164aaca272b06ca78bfa/Creep-of-mountain-permafrost-Internal-structure-and-flow-of-alpine-rock-glaciersmitteilungen-Der-versuchsanstalt-fur-wasserbau.pdf (accessed on 2 March 2023).
- Barsch, D. Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ikeda, A.; Matsuoka, N. Degradation of Talus-derived Rock Glaciers in the Upper Engadin, Swiss Alps. Permafr. Periglac. Process. 2002, 13, 145–161. [Google Scholar] [CrossRef]
- Potter, J.N.; Steig, E.J.; Clark, D.H.; Speece, M.A.; Clark, G.T.; Updike, A.B. Galena Creek Rock Glacier Revisited-New Observations on an Old Controversy. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 251–265. [Google Scholar] [CrossRef]
- Colucci, R.R.; Boccali, C.; Žebre, M.; Guglielmin, M. Rock Glaciers, Protalus Ramparts and Pronival Ramparts in the South-Eastern Alps. Geomorphology 2016, 269, 112–121. [Google Scholar] [CrossRef]
- Janke, J.R. Colorado Front Range Rock Glaciers: Distribution and Topographic Characteristics. Arctic, Antarct. Alp. Res. 2007, 39, 74–83. [Google Scholar] [CrossRef]
- Wahrhaftig, C.; Cox, A. Rock glaciers in the Alaska range. Geol. Soc. Am. Bull. 1959, 70, 383–436. [Google Scholar] [CrossRef]
- Pearson, K. Mathematical Contributions to the Theory of Evolution. Proc. R. Soc. Lond. 1897, 60, 273–283. [Google Scholar]
- Kim, T.K. T Test as a Parametric Statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Guglielmin, M.; Smiraglia, C. The Rock Glacier Inventory of the Italian Alps. In Proceedings of the Seventh International Conference on Permafrost, Yellowknife, NT, Canada, 23–27 June 1998 ; Volume 57, pp. 375–382. [Google Scholar]
- Harrison, S.; Whalley, B.; Anderson, E. Relict Rock Glaciers and Protalus Lobes in the British Isles: Implications for Late Pleistocene Mountain Geomorphology and Palaeoclimate. J. Quat. Sci. Publ. Quat. Res. Assoc. 2007, 23, 287–304. [Google Scholar] [CrossRef]
- Outcalt, S.I.; Benedict, J.B. Photo-Interpretation of Two Types of Rock Glacier in the Colorado Front Range, USA. J. Glaciol. 1965, 5, 849–856. [Google Scholar] [CrossRef]
- Kellerer-Pirklbauer, A.; Rieckh, M. Monitoring Nourishment Processes in the Rooting Zone of an Active Rock Glacier in an Alpine Environment. Z. Geomorphol. Suppl. Issues 2016, 60, 99–121. [Google Scholar] [CrossRef]
- Brenning a Climatic and Geomorphological Controls of Rock Glaciers in the Andes of Central Chile: Combining Statistical Modelling and Field Mapping; Humboldt-Universität zu Berlin: Berlin, Germany, 2005.
- Bodin, X.; Rojas, F. Brenning A Status and Evolution of the Cryosphere in the Andes of Santiago (Chile, 33.5°S). Geomorphology 2010, 118, 453–464. [Google Scholar] [CrossRef]
- Perucca, L. Esper Angillieri M Glaciers and Rock Glaciers’ Distribution at 28° SL, Dry Andes of Argentina, and Some Considerations about Their Hydrological Significance. Environ. Earth Sci. 2001, 64, 2079–2089. [Google Scholar] [CrossRef]
- Rangecroft, S.; Harrison, S. Anderson K Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance. Arctic Antarct. Alp. Res. 2015, 47, 89–98. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Grinsted, A. An estimate of global glacier volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Angillieri, M.Y. Application of Frequency Ratio and Logistic Regression to Active Rock Glacier Occurrence in the Andes of San Juan, Argentina. Geomorphology 2010, 114, 396–405. [Google Scholar] [CrossRef]
- Janke JR, N.S. Bellisario A An Inventory and Estimate of Water Stored in Firn Fields, Glaciers, Debris-Covered Glaciers, and Rock Glaciers in the Aconcagua River Basin, Chile. Geomorphology 2017, 296, 142–152. [Google Scholar] [CrossRef]
- Brardinoni, F.; Scotti, R.; Sailer, R.; Mair, V. Evaluating Sources of Uncertainty and Variability in Rock Glacier Inventories. Earth Surf. Process. Landforms 2019, 44, 2450–2466. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhao, L.; Wu, T.; Li, Z.; Liu, G. Mapping and Inventorying Active Rock Glaciers in the Northern Tien Shan of China Using Satellite SAR Interferometry. Cryosphere 2017, 11, 997–1014. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef]
- Gruber, S.; Fleiner, R.; Guegan, E.; Panday, P.; Schmid, M.O.; Stumm, D.; Wester, P.; Zhang, Y.; Zhao, L. Inferring Permafrost and Permafrost Thaw in the Mountains of the Hindu Kush Himalaya Region. Cryosphere 2017, 13, 8. [Google Scholar] [CrossRef]
- Wani, J.M.; Thayyen, R.J.; Gruber, S.; Ojha, C.S.; Stumm, D. Single-Year Thermal Regime and Inferred Permafrost Occurrence in the Upper Ganglass Catchment of the Cold-Arid Himalaya, Ladakh, India. Sci. Total Environ. 2020, 703, 134631. [Google Scholar] [CrossRef] [PubMed]
- Selley, H.; Harrison, S.; Glasser, N.; Wündrich, O.; Colson, D.; Hubbard, A. Rock Glaciers in Central Patagonia. Geogr. Ann. Ser. A Phys. Geogr. 2019, 101, 1–15. [Google Scholar] [CrossRef]
- García, A.; Ulloa, C.; Amigo, G.; Milana, J.P.; Medina, C. An Inventory of Cryospheric Landforms in the Arid Diagonal of South America (High Central Andes, Atacama Region, Chile). Quat. Int. 2017, 438, 4–19. [Google Scholar] [CrossRef]
- Falaschi, D.; Tadono, T.; Masiokas, M. Rock Glaciers in the Patagonian Andes: An Inventory for the Monte San Lorenzo (Cerro Cochrane) Massif, 47 S. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 769–777. [Google Scholar] [CrossRef]
- Hess, K.; Schmidt, S.; Nüsser, M.; Zang, C.; Dame, J. Glacier Changes in the Semi-Arid Huasco Valley, Chile, between 1986 and 2016. Geosciences 2020, 10, 429. [Google Scholar] [CrossRef]
- Uxa, T.; Mida, P. Rock Glaciers in the Western and High Tatra Mountains, Western Carpathians. J. Maps 2017, 13, 844–857. [Google Scholar] [CrossRef]
- Onaca, A.; Ardelean, F.; Urdea, P.; Magori, B. Southern Carpathian Rock Glaciers: Inventory, Distribution and Environmental Controlling Factors. Geomorphology 2017, 293, 391–404. [Google Scholar] [CrossRef]
- Seppi, R.; Carton, A.; Zumiani, M.; Dall’Amico, M.; Zampedri, G.; Rigon, R. Inventory, Distribution and Topographic Features of Rock Glaciers in the Southern Region of the Eastern Italian Alps (Trentino). Geogr. Fis. Din. Quat. 2012, 35, 185–197. [Google Scholar]
- Krainer, K.; Ribis, M. A Rock Glacier Inventory of the Tyrolean Alps (Austria). Austrian J. Earth Sci. 2012, 105, 32–47. [Google Scholar]
- Baral, P.; Haq, M.A. Yaragal S Assessment of Rock Glaciers and Permafrost Distribution in Uttarakhand. India. Permafr. Periglac. Process. 2020, 31, 31–56. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Bashir, J.; Rashid, I. Twenty-First Century-End Climate Scenario of Jammu and Kashmir Himalaya, India, Using Ensemble Climate Models. Clim. Chang. 2020, 162, 1473–1491. [Google Scholar] [CrossRef]
- Salerno, F.; Thakuri, S.; Tartari, G.; Nuimura, T.; Sunako, S.; Sakai, A.; Fujita, K. Debris-Covered Glacier Anomaly? Morphological Factors Controlling Changes in the Mass Balance, Surface Area, Terminus Position, and Snow Line Altitude of Himalayan Glaciers. Earth Planet. Sci. Lett. 2017, 471, 19–31. [Google Scholar] [CrossRef]
- Vuille, M.; Franquist, E.; Garreaud, R.; Lavado Casimiro, W.S.; Cáceres, B. Impact of the Global Warming Hiatus on Andean Temperature. J. Geophys. Res. Atmos. 2015, 120, 3745–3757. [Google Scholar] [CrossRef]
- Palazzi, E.; Filippi, L.; Hardenberg, J. Insights into Elevation-Dependent Warming in the Tibetan Plateau-Himalayas from CMIP5 Model Simulations. Clim. Dyn. 2016, 48, 3991–4008. [Google Scholar] [CrossRef]
- Johnson, B.G.; Thackray, G.D.; Kirk, R. The Effect of Topography, Latitude, and Lithology on Rock Glacier Distribution in the Lemhi Range. Geomorphology 2007, 91, 38–50. [Google Scholar] [CrossRef]
- Onaca, A.; Ardelean, F.; Ardelean, A.; Magori, B.; Sirbu, F.; Voiculescu, M.; Gachev, E. Assessment of Permafrost Conditions in the Highest Mountains of the Balkan Peninsula. CATENA 2020, 185, 104288. [Google Scholar] [CrossRef]
- Abdullah, T.; Romshoo, S.A.; Rashid, I. The Satellite Observed Glacier Mass Changes over the Upper Indus Basin during 2000–2012. Sci. Rep. 2020, 10, 14285. [Google Scholar] [CrossRef]
- Dar, R.A.; Romshoo, S.A.; Chandra, R.; Ahmad, I. Tectono-Geomorphic Study of the Karewa Basin of Kashmir Valley. J. Asian Earth Sci. 2014, 92, 143–156. [Google Scholar] [CrossRef]
- Paul, O.J.; Dar, R.A.; Romshoo, S.A. Cirque Development in the Pir Panjal Range of North Western Himalaya, India. CATENA 2022, 213, 106179. [Google Scholar] [CrossRef]
- Clark, D.H.; Steig, E.J.; Potter, N., Jr.; Gillespie, A.R. Genetic Variability of Rock Glaciers. Geogr. Ann. Ser. A Phys. Geogr. 1998, 80, 175–182. [Google Scholar] [CrossRef]
- Cossart, E.; Fort, M.; Bourles, D.; Carcaillet, J.; Perrier, R.; Siame, L.; Braucher, R. Climatic Significance of Glacier Retreat and Rockglaciers Re-Assessed in the Light of Cosmogenic Dating and Weathering Rind Thickness in Clarée Valley (Briançonnais, French Alps). CATENA 2010, 80, 204–219. [Google Scholar] [CrossRef]
- Paul, O.J.; Dar, R.A.; Romshoo, S.A. Paleo-Glacial and Paleo-Equilibrium Line Altitude Reconstruction from the Late Quaternary Glacier Features in the Pir Panjal Range, NW Himalayas. Quat. Int. 2022, 642, 5–16. [Google Scholar] [CrossRef]
- Thakur, V.C.; Rawat, B.S. Geological Map of the Western Himalaya; Wadia Institute of Himalayan Geology: Dehradun, India, 1992. [Google Scholar]
- Brighenti, S.; Tolotti, M.; Bruno, M.C.; Wharton, G.; Pusch, M.T.; Bertoldi, W. Ecosystem Shifts in Alpine Streams under Glacier Retreat and Rock Glacier Thaw: A Review. Sci. Total Environ. 2019, 675, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Krainer, K.; Mostler, W. Dynamics of an Active Rock Glacier (Ötztal Alps, Austria). Quat. Res. 2004, 62, 233–242. [Google Scholar] [CrossRef]
- Marazi, A.; Romshoo, S.A. Streamflow Response to Shrinking Glaciers under Changing Climate in the Lidder Valley, Kashmir Himalayas. J. Mt. Sci. 2018, 15, 1241–1253. [Google Scholar] [CrossRef]
- Geiger, S.T.; Daniels, J.M.; Miller, S.N.; Nicholas, J.W. Influence of Rock Glaciers on Stream Hydrology in the La Sal Mountains, Utah. Arctic, Antarct. Alp. Res. 2014, 46, 645–658. [Google Scholar] [CrossRef]
- Bashir, J.; Romshoo, S.A. Bias-Corrected Climate Change Projections over the Upper Indus Basin Using a Multi-Model Ensemble. Environ. Sci. Pollut. Res. 2023, 30, 64517–64535. [Google Scholar] [CrossRef]
Image Source | Acquisition Date | Rock Glacier Mapped |
---|---|---|
Maxar Technologies Westminster, CO, USA | 4 October 2011 | 5 |
CNES/AIRBUS | 21 October 2013 | 7 |
Maxar Technologies | 21 September 2014 | 9 |
22 November 2014 | ||
CNES/AIRBUS | 9 June 2016 | 2 |
CNES/AIRBUS | 3 October 2017 | 210 |
6 November 2017 | ||
11 November 2017 | ||
12 November 2017 | ||
29 October 2017 | ||
30 October 2017 | ||
31 October 2017 | ||
Maxar Technologies | 17 October 2017 | |
Maxar Technologies | 14 September 2018 | 4 |
17 October 2020 | 3 |
Geomorphic Indicator | Intact Rock Glaciers | Relict | |
---|---|---|---|
Active | Inactive | ||
Surface flow Structure | Defined furrow and ridge topography [56,76,78,79] | Relatively subdued micro-topography [53,57,79,80] | Less defined furrow and ridge topography [76] |
Rock Glacier Body | Swollen body [77] Surface ice exposures[81] | Can have swollen body and surface ice exposures [77,81] | Flattened body [77] Surface collapse features [82,83] |
Front Slope | Steep (~>30–35°) [53] Abrupt transition (sharp-crested) to the upper surface [84] Light-colored (little clast weathering) frontal zone, and a darker varnished upper surface [44] | Generally gentler slopes [26,53] Dark-coloured rock-varnished frontal slopes [44,80] | Gently sloping (~<30°) [77] Gentle transition (i.e., round-crested) to the upper surface [84] |
Attribute | Attribute Explanation |
---|---|
ID | Unique identification number (e.g., RG-124) |
Mountain Range | [PR] PirPanjal, [GH] Greater Himalayas |
Lon | Longitudinal coordinate of polygon centroid (DDD.ddd [N]) |
Lat | Latitudinal coordinate of polygon centroid (DD.ddd [E]) |
MEF (m asl) | Minimum elevation at the front |
MaxE (m a.s.l.) | Maximum elevation of the feature |
MeanE (m a.s.l.) Slope (°) | Mean elevation of the feature Range|Mean |
Area (km2) | / |
Aspect Class | N, NE, E, SE, S, SW, W, NW (e.g., 90° = E, 180° = S) |
Length (m) | Maximum length of the landform |
Width (m) | Mean width of the landform |
L:W Ratio | Length:width ratio |
Geometry | Tongue-shaped, lobate-shaped |
Status | Active, inactive, relict |
Area (km2) | |||||
---|---|---|---|---|---|
Size Category (km2) | Count | Mean | Total | Mean Elevation (m asl) | Mean Slope (°) |
<0.10 | 124 (51.66%) | 0.04 | 5.51 ± 0.3 (13.35%) | 4011 ± 198 | 20.92 |
0.1–0.5 | 99 (41.25%) | 0.23 | 22.8 ± 1.2 (55.29%) | 3989 ± 194 | 18.53 |
>0.5 | 17 (7.08%) | 0.76 | 12.93 ± 0.6 (31.25%) | 3988 ± 192 | 18.45 |
Area (km2) | Elevation (m asl) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Status | Count | Min | Max | Mean | Total | MAF | MaxE | MeanE | Mean Slope (°) | Mean Max Length (m) |
Active | 183 (76.25%) | 0.01 | 1.04 | 0.19 | 35.55 ± 1.8 (86.18%) | 3481 ± 145 | 4485 ± 275 | 4015 ± 196 | 19.64 | 699.44 |
Inactive | 48 (20.0%) | 0.00 | 0.35 | 0.06 | 3.1 ± 0.2 (7.52%) | 3672 ± 146 | 4349 ± 276 | 4010 ± 197 | 20.99 | 426.50 |
Relict | 9 (3.75%) | 0.02 | 0.64 | 0.29 | 2.59 ± 0.1 (6.28%) | 3316 ± 131 | 3939 ± 247 | 3650 ± 177 | 15.71 | 952.98 |
Elevation (m asl) | |||||
---|---|---|---|---|---|
Area (km2) | |||||
Category | Count | Min | Max | Mean | Total |
3500–4000 | 107 (44.5%) | 0.003 | 1.04 | 0.19 | 20.96 ± 1.1 (50.82%) |
4000–4500 | 133 (55.4%) | 0.008 | 1.03 | 0.15 | 20.28 ± 1.1 (49.17%) |
Slope (°) | |||||
10–15 | 30 (12.50%) | 0.02 | 0.78 | 0.19 | 5.64 ± 0.3 (13.67%)) |
15–20 | 104 (43.33%) | 0.01 | 1.04 | 0.21 | 22.15 ± 1.2 (58.68%) |
20–25 | 79 (32.92%) | 0.01 | 0.97 | 0.15 | 12.12 ± 0.6 (29.37%) |
25–30 | 18 (7.50%) | 0.00 | 0.18 | 0.06 | 1.09 ± 0.06 (2.64%) |
30–35 | 9 (3.75%) | 0.01 | 0.06 | 0.03 | 0.26 ± 0.01 (0.64%) |
Elevation (m asl) | Slope (°) | Area (km2) | Length (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aspect | Count | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Total | Min | Max | Mean |
E | 2 (0.83%) | 3921 ± 145 | 4202 ± 274 | 4062 ± 196 | 15.50 | 19.76 | 17.63 | 0.44 | 0.65 | 0.55 | 1.10 ± 0.1 (2.65%) | 1404.18 | 1445.78 | 1424.98 |
N | 215 (89.58%) | 3574 ± 145 | 4301 ± 274 | 3995 ± 197 | 9.05 | 35.49 | 19.65 | 0.00 | 1.04 | 0.17 | 35.69 ± 0.6 (86.51%) | 90.87 | 2163.59 | 630.34 |
S | 12 (5.0%) | 3825 ± 149 | 4315 ± 282 | 4149 ± 202 | 13.14 | 31.17 | 21.49 | 0.02 | 0.97 | 0.20 | 2.42 ± 0.1 (5.87%) | 134.00 | 1680.02 | 718.22 |
W | 11 (4.58%) | 3504 ± 141 | 4177 ± 267 | 3937 ± 190 | 14.47 | 24.18 | 20.40 | 0.02 | 0.39 | 0.19 | 2.0 ± 40.1 (2.95%) | 281.15 | 1513.85 | 914.17 |
Study Area * | Number | Area (km2) | Activity | Min. Elevation (m asl) | Max. Elevation (m asl) | Mean Elevation (m asl) | Source |
---|---|---|---|---|---|---|---|
North America | |||||||
Colorado Front Range (North America) | 220 | 19.9 | Active Inactive Relict | 3525 3424 3227 | 3668 3541 3358 | 3594 3477 3288 | [83] |
South America | |||||||
Central Patagonia | 89 | 14.18 | Intact Relict | 1766 1758 | 1941 1919 | - - | [104] |
Aconcagua River Basin | 669 | 70.0 | All | 2370 | 4565 | 3810 | [98] |
Central Andes (Atacama region) | 477 | 44.34 | All | 3807 | 5504 | 4427 | [105] |
Volcán Domuyo region, southernmost Central Andes | 224 | 17.7 | Active Inactive Relict | 2664 2165 1955 | 3968 3526 3340 | 3047 2821 2644 | [106] |
Monte San Lorenzo massif | 177 | 11.31 | Intact Relict | 1335 1267 | 2155 2030 | 1742 1590 | [106] |
Valles Calchaquíes Region | 488 | 58.5 | Intact Relict | 4183 4072 | 5908 5397 | 4873 4695 | [106] |
Huasco Valley, Chile | 50 | 8.6 | All | 3840 | 5070 | 4220 | [107] |
Europe | |||||||
Western Tatra Mts. | 183 | 7.14 | Intact Relict | 1812 1644 | - - | - - | [108] |
High Tatra Mts. | 200 | 6.7 | Intact Relict | 2011 1731 | - - | - | [108] |
Southern Carpathian | 306 | 12.7 | All | - | - | 1998 | [109] |
Southern region of the eastern Italian Alps | 705 | 33.3 | Intact Relict | 2716 1644 | 3082 2669 | 2632 2169 | [110] |
South-eastern Alps | 53 | 3.45 | All | - | - | 1778 | [82] |
Tyrolean Alps | 3145 | 167.2 | Active | 2628 | 2797 | 2704 | [111] |
Inactive | 2542 | 2665 | 2598 | ||||
Relict | 2279 | 2384 | 2330 | ||||
Asia | |||||||
Nepalese Himalaya | 6239 | 249.83 | Intact Relict | 4977 4541 | 5215 4738 | - - | [30] |
Himachal Himalaya | 516 | 353 | All | 4484 | 4900 | - | [59] |
TienShan of China | 261 | 91.5 | All | 3174 | 3486 | - | [100] |
Daxue Shan, southeastern Tibetan Plateau | 295 | 55.70 | All | 4352 | - | 4471 | [58] |
Central Himalaya | 370 | 28.9 | All | 4000 | 6000 | 5100 | [41] |
Uttarakhand, Central Himalaya | 1004 | 172.06 | All | 3821 | 5822 | 4742 | [112] |
Jhelum Basin, Kashmir Himalaya | 207 | 48.23 | Active Relict | 3591 3573 | 4461 4588 | 4026 4057 | [61] |
Jhelum Basin, Kashmir Himalaya | 231 | 48.46 | Active | 3019 | 4633 | - | [60] |
Jhelum basin Northwestern Himalaya | 240 | 41.24 | Active Inactive Relict | 3481 3672 3316 | 4485 4349 3939 | 4015 4010 2650 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, T.; Romshoo, S.A. A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data. Water 2024, 16, 2327. https://doi.org/10.3390/w16162327
Abdullah T, Romshoo SA. A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data. Water. 2024; 16(16):2327. https://doi.org/10.3390/w16162327
Chicago/Turabian StyleAbdullah, Tariq, and Shakil Ahmad Romshoo. 2024. "A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data" Water 16, no. 16: 2327. https://doi.org/10.3390/w16162327
APA StyleAbdullah, T., & Romshoo, S. A. (2024). A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data. Water, 16(16), 2327. https://doi.org/10.3390/w16162327