Dewaterability Enhancement of Anaerobic Sludge Using Polymeric Aluminum Chloride and Polyoxyethylene Alkyl Ether Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dewaterability Analysis of Anaerobic Sludge
2.2.1. Chemical Pretreatment for Anaerobic Sludge Dewatering
2.2.2. Time to Filtration
2.2.3. Pressure Filter Press
3. Results
3.1. Dewatering Capability Analysis of Anaerobic Sludge with PAC as Coagulant
3.2. Dewatering Capability Analysis of Anaerobic Sludge with POAE as Surfactant
3.3. Dewatering Capability Analysis of Anaerobic Sludge with pH
3.4. Evaluation of Anaerobic Sludge Dewatering Capability at High Pressure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Environment. 2020 Wastewater Statistics. Available online: https://me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10264&orgCd=&condition.toInpYmd=null&condition.code=A5&condition.fromInpYmd=null&condition.orderSeqId=6430&condition.rnSeq=110&condition.deleteYn=N&condition.deptNm=null&seq=7809 (accessed on 9 April 2024).
- Guo, W.-Q.; Yang, S.-S.; Xiang, W.-S.; Wang, X.-J.; Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes—A comprehensive review. Biotechnol. Adv. 2013, 31, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, Z.; Jiang, P.; Guan, Y.; Wang, L.; Mei, L.; Zhou, A.; Hou, H.; Xu, H. Test and analysis of sludge dewatering with a vacuum negative pressure load at the bottom of full section. Adv. Civ. Eng. 2020, 2020, 8840043. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Q.; Li, J.; Wang, D.; Zheng, R.; Gu, Q.; Zhang, Y. Preparation and dewatering property of two sludge conditioners chitosan/AM/AA and chitosan/AM/AA/DMDAAC. J. Polym. Environ. 2019, 27, 275–285. [Google Scholar] [CrossRef]
- Nan, S.; Jia, Y. Experimental research of sludge dewatering by vacuum filtration. J. Zhengzhou Univ. 2003, 35, 83–85. [Google Scholar]
- Lee, D.J.; Lee, S.Y.; Kwon, Y.H.; Cho, Y.A.; Bae, J.S. A study on environmental and economic analysis for each treatment of sewage sludge (II): Results of economic analysis. J. Korea Org. Resour. Recycl. Assoc. 2016, 24, 15–29. [Google Scholar]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef] [PubMed]
- Bennamoun, L. Solar drying of wastewater sludge: A review. Renew. Sustain. Energy Rev. 2012, 16, 1061–1073. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, B.; Wang, D.; Ma, T.; Xia, H.; Yu, D. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res. 2016, 88, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, P.; Yang, X.; Chen, Z.; Wang, D. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process. Bioresour. Technol. 2015, 181, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, X.; Wu, Z.; Wang, H.; Xiao, Z.; Wu, Y.; Wang, H.; Xiao, Z.; Wu, Y.; Chen, W.; et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chem. Eng. J. 2016, 303, 636–645. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F. Application of filtration aids for improving sludge dewatering properties—A review. Chem. Eng. J. 2011, 171, 373–384. [Google Scholar] [CrossRef]
- Dhar, B.R.; Nakhla, G.; Ray, M.B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Manag. 2012, 32, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, D.; Zhang, J.; Yang, M.; Wang, Y.; Wei, Y.; Tong, J. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res. 2016, 98, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernando, M.; Simón, F.X.; Labanda, J.; Llorens, J. Effect of ultrasound, thermal and alkali treatments on the rheological profile and water distribution of waste activated sludge. Chem. Eng. J. 2014, 255, 14–22. [Google Scholar] [CrossRef]
- Zhen, G.Y.; Lu, X.Q.; Li, Y.Y.; Zhao, Y.C. Innovative combination of electrolysis and Fe (II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge. Bioresour. Technol. 2013, 136, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wilén, B.M.; Lant, P. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chem. Eng. J. 2004, 98, 115–126. [Google Scholar] [CrossRef]
- Novak, J.T.; Sadler, M.E.; Murthy, S.N. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res. 2003, 37, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, Y.; Qiao, W. Possible solutions for sludge dewatering in China. Front. Environ. Sci. Eng. China 2010, 4, 102–107. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Zhu, N.; Zhang, H.; Li, Y.; He, S.; Yang, C.; Yao, H. A comprehensive insight into the combined effects of Fenton’s reagent and skeleton builders on sludge deep dewatering performance. J. Hazard. Mater. 2013, 258, 144–150. [Google Scholar] [CrossRef]
- Ke, M.Y. Probe into advanced sludge dewatering technology in Jimei Wastewater Treatment Plant. Water Wastewater 2011, 37, 40–43. [Google Scholar]
- Cao, B.; Zhang, W.; Wang, Q.; Huang, Y.; Meng, C.; Wang, D. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation. Water Res. 2016, 105, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.B.; Christensen, J.R.; Bruus, J.H. Effect of small-scale solids migration in filter cakes during filtration of wastewater solids suspensions. Water Environ. Res. 1995, 67, 25–32. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Wang, D.; Ma, T.; Bai, R. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology. Water Res. 2015, 83, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.T.; O’Brien, J.H. Polymer conditioning of chemical sludges. J. Water Pollut. Control Fed. 1975, 47, 2397–2410. [Google Scholar]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment; IWA Publishing: London, UK, 2016. [Google Scholar]
- Lee, C.H.; Liu, J.C. Sludge dewaterability and floc structure in dual polymer conditioning. Adv. Environ. Res. 2001, 5, 129–136. [Google Scholar] [CrossRef]
- Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 2016, 95, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shang, Y.; Yuan, B.; Jiang, Y.; Lu, Y.; Qin, Z.; Chen, A.; Qian, X.; Yang, H.; Cheng, R. The flocculating properties of chitosan-graft-polyacrylamide flocculants (II)—Test in pilot scale. J. Appl. Polym. Sci. 2010, 117, 2016–2024. [Google Scholar] [CrossRef]
- Hubbard, A.T. Encyclopedia of Surface and Colloid Science; CRC Press: Boca Raton, FL, USA, 2002; Volume 1. [Google Scholar]
- Overbeek, J.T.G. Colloid and Interface Science; Academic Press Inc.: Cambridge, MA, USA, 1977. [Google Scholar]
- Castro, M.J.; Kovensky, J.; Cirelli, A.F. Ecologically safe alkyl glucoside-based gemini surfactants. Arkivoc 2005, 12, 253–267. [Google Scholar]
- Hong, C.; Si, Y.; Xing, Y.; Wang, Z.; Qiao, Q.; Liu, M. Effect of surfactant on bound water content and extracellular polymers substances distribution in sludge. RSC Adv. 2015, 5, 23383–23390. [Google Scholar] [CrossRef]
- Fu, J.; Jiang, B.; Cai, W. Effect of synthetic cationic surfactants on dewaterability and settleability of activated sludge. Int. J. Environ. Pollut. 2009, 37, 113–131. [Google Scholar] [CrossRef]
- Seoul Water. Study on the Optimal Operation of a Rapid Coagulation and Sedimentation Process for the Reuse of Treated Wastewater. Available online: https://arisu.seoul.go.kr/sudo_eng/index.jsp (accessed on 9 April 2024).
- Mazaheri, R.; Ghazani, M.T.; Alighardashi, A. Effects of Moringa peregrina and ferric chloride (FeCl3) on water treatment sludge dewatering. Biosci. Biotechnol. Res. Asia 2018, 15, 975–980. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1926; Volume 6. [Google Scholar]
- Lin, Q.; Peng, H.; Zhong, S.; Xiang, J. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant. J. Hazard. Mater. 2015, 285, 199–206. [Google Scholar] [CrossRef]
- Krahnstöver, T.; Zenker, A.; Baggenstos, M.; Kobler, B.; Leikam, K.; Koch, G.; Wintgens, T. Characterizing solids retention, head loss development and micropollutant removal in the case of direct powdered activated carbon dosage upstream of deep bed filtration. Environ. Sci. Water Res. Technol. 2019, 5, 2172–2181. [Google Scholar] [CrossRef]
- Li, Z.; Lu, P.; Zhang, D.; Chen, G.; Zeng, S.; He, Q. Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics. Sep. Purif. Technol. 2016, 162, 91–100. [Google Scholar] [CrossRef]
- Echavarría, A.P.; Torras, C.; Pagan, J.; Ibarz, A. Fruit juice processing and membrane technology application. Food Eng. Rev. 2011, 3, 136–158. [Google Scholar] [CrossRef]
- Park, K.; Kim, P.; Kim, H.G.; Kim, J. Membrane fouling mechanisms in combined microfiltration-coagulation of algal rich water applying ceramic membranes. Membranes 2019, 9, 33. [Google Scholar] [CrossRef]
- Gupta, M.K. Handling and Disposal of Sludges from Combined Sewer Overflow Treatment: Phase 1, Characterization; Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory: Washington, DC, USA, 1977. [Google Scholar]
- Zheng, H.; Sun, Y.; Zhu, C.; Guo, J.; Zhao, C.; Liao, Y.; Guan, Q. UV-initiated polymerization of hydrophobically associating cationic flocculants: Synthesis, characterization, and dewatering properties. Chem. Eng. J. 2013, 234, 318–326. [Google Scholar] [CrossRef]
- Besra, L.; Sengupta, D.K.; Roy, S.K.; Ay, P. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension. Sep. Purif. Technol. 2004, 37, 231–246. [Google Scholar] [CrossRef]
- Raynaud, M.; Vaxelaire, J.; Olivier, J.; Dieudé-Fauvel, E.; Baudez, J.C. Compression dewatering of municipal activated sludge: Effects of salt and pH. Water Res. 2012, 46, 4448–4456. [Google Scholar] [CrossRef]
- Verrelli, D.I.; Dixon, D.R.; Scales, P.J. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 14–23. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J.; Dewil, R. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 2004, 106, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, H.; Gu, G. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res. 2001, 35, 2615–2620. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wang, D.; Shi, B.; Yu, J.; Qu, J.; Edwards, M.; Tang, H. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids Surf. A Physicochem. Eng. Asp. 2007, 294, 163–173. [Google Scholar] [CrossRef]
- Hu, C.; Liu, H.; Qu, J.; Wang, D.; Ru, J. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control. Environ. Sci. Technol. 2006, 40, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Qin, W.; Wei, J.; Lv, J.; Yang, P. Effect of chemical regulation combined with mechanical filtration on deep dewatering and consolidation characteristics of sludge. Environ. Sci. Pollut. Res. 2023, 30, 89088–89100. [Google Scholar] [CrossRef] [PubMed]
Parameter | Moisture Content (%) | TS 1 (%) | VS 2/TS 1 (%) | pH | COD (mg/L) | TP (mg/L) |
---|---|---|---|---|---|---|
Anaerobic sludge | 96.7 | 3.30 | 47.27 | 8.12 | 39,200 | 130 |
Parameter | PAC | POAE |
---|---|---|
Concentration (%) | 17 | 48 |
Specific gravity | 1.19 | 1.0–1.2 |
pH | 3.5–5.5 | 4.0–6.0 |
Coagulant | Dosage (mg/L) | ||||
---|---|---|---|---|---|
PAC | 105 | 315 | 524 | 876 | 1794 |
Surfactant | Dosage (mg/L) | ||||
---|---|---|---|---|---|
POAE | 28 | 38 | 76 | 114 | 151 |
Description | Sludge (Raw) | Sludge (POAE-76) | Sludge (POAE-114) |
---|---|---|---|
Dewatered cake | |||
Moisture contents (%) | 96.7 | 95.30 | 72.7 |
Filtrate | |||
COD (%) | 39,200 | 1440 | 440 |
TP (%) | 130 | 32.3 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, E.; Kim, E.; Kim, G.W.; Jeong, C.J.; Lee, W.; Han, S.K. Dewaterability Enhancement of Anaerobic Sludge Using Polymeric Aluminum Chloride and Polyoxyethylene Alkyl Ether Surfactants. Water 2024, 16, 2303. https://doi.org/10.3390/w16162303
Song E, Kim E, Kim GW, Jeong CJ, Lee W, Han SK. Dewaterability Enhancement of Anaerobic Sludge Using Polymeric Aluminum Chloride and Polyoxyethylene Alkyl Ether Surfactants. Water. 2024; 16(16):2303. https://doi.org/10.3390/w16162303
Chicago/Turabian StyleSong, Eunhye, Eunju Kim, Gyeong Woo Kim, Cheol Jin Jeong, Wonbae Lee, and Seong Kuk Han. 2024. "Dewaterability Enhancement of Anaerobic Sludge Using Polymeric Aluminum Chloride and Polyoxyethylene Alkyl Ether Surfactants" Water 16, no. 16: 2303. https://doi.org/10.3390/w16162303
APA StyleSong, E., Kim, E., Kim, G. W., Jeong, C. J., Lee, W., & Han, S. K. (2024). Dewaterability Enhancement of Anaerobic Sludge Using Polymeric Aluminum Chloride and Polyoxyethylene Alkyl Ether Surfactants. Water, 16(16), 2303. https://doi.org/10.3390/w16162303