Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Preprocessing
2.2.1. Remote Sensing Data
- (1)
- Sentinel-1 SAR
- (2)
- Landsat data
2.2.2. Factors Influencing the Spatial and Temporal Variability of Surface Water
- (1)
- Meteorological Data
- (2)
- Digital Elevation Model (DEM)
- (3)
- Other Data Sources
2.3. Methodology
2.3.1. Methods for Water Extraction and Accuracy Verification
- (1)
- Sentinel-1 Dual-Polarized Water Index (SDWI)
- (2)
- Normalized Difference Water Index (NDWI)
- (3)
- Otsu’s Method (Otsu)
- (4)
- Confusion Matrix and Kappa Coefficient
2.3.2. Scale Division
- (1)
- Sub-basin Scale
- (2)
- Grid Scale
2.3.3. Emerging Hot Spot Analysis
2.3.4. Methodologies for Analyzing Driving Factors
- (1)
- Random Forest Regression
- (2)
- Geographically Weighted Regression (GWR)
3. Results
3.1. Spatiotemporal Evolution of Water in the Tumen River Basin
3.1.1. Accuracy Assessment of Water Extraction
3.1.2. Spatiotemporal Characteristics of Water Changes
3.1.3. Emerging Hot Spot Analysis in Surface Water
- (1)
- Sub-watershed Scale
- (2)
- Grid Scale
3.2. Fitting Results of the Random Forest Regression Model
3.2.1. Model Construction
- (1)
- Selection of Model Variables and Parameter Settings
- (2)
- Model Fit
3.2.2. Relative Importance of Drivers of Water Area Change
3.2.3. Partial Dependence Plots for the Driving Factors of Water Area Changes
3.3. Fitting Results of the Geographically Weighted Regression Model
3.3.1. Model Construction
- (1)
- Multicollinearity Test Results
- (2)
- Comparison of Model Goodness of Fit
3.3.2. Spatial Distribution of Regression Coefficients for the Driving Factors of Water Area Changes
4. Discussion
4.1. Spatiotemporal Characteristics and Emerging Hot Spot Analysis of Water in the Tumen River Basin
4.2. Analysis of the Driving Factors for Surface Water Area Changes Based on Random Forest Regression at Different Scales
4.3. Analysis of the Driving Factors for Surface Water Area Changes Based on GWR
4.3.1. Comparative Analysis of the Driving Factors for Surface Water Area Changes in Different Countries
4.3.2. Comparative Analysis of the Driving Factors for Surface Water Area Changes at Different Scales
4.4. Strengths and Limitations of the Research Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beven, K.; Cloke, H. Comment on: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water by Eric F Wood et al. Water Resour. Res. 2012, 48, W01801. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Ling, H.; Han, F.; Kong, Z.; Wang, W. Function zoning based on spatial and temporal changes in quantity and quality of ecosystem services under enhanced management of water resources in arid basins. Ecol. Indic. 2022, 137, 108725. [Google Scholar] [CrossRef]
- Mishra, R.K. Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Lv, H.; Yang, L.; Zhou, J.; Zhang, X.; Wu, W.; Li, Y.; Jiang, D. Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resour. Conserv. Recycl. 2020, 163, 105095. [Google Scholar] [CrossRef]
- Vila-Traver, J.; Aguilera, E.; Infante-Amate, J.; de Molina, M.G. Climate change and industrialization as the main drivers of Spanish agriculture water stress. Sci. Total Environ. 2021, 760, 143399. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, X.; Qiao, Y. Analysis on impacts of hydro-climatic changes and human activities on available water changes in Central Asia. Sci. Total Environ. 2020, 737, 139779. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Maskey, S.; Chaffe, P.L.; Luo, P.; He, B.; Wu, Y.; Hou, J. Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sens. 2021, 13, 1097. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Zhang, T.; Chen, F. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. Natl. Remote Sens. Bull. 2022, 26, 115–125. [Google Scholar] [CrossRef]
- Liu, H. Application and Outlook of Remote Sensing Technology in Water Environment Monitoring. Highlights Sci. Eng. Technol. 2023, 69, 174–181. [Google Scholar] [CrossRef]
- Dehkordi, A.T.; Zoej, M.J.V.; Ghasemi, H.; Jafari, M.; Mehran, A. Monitoring long-term spatiotemporal changes in iran surface waters using landsat imagery. Remote Sens. 2022, 14, 4491. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Xu, Z.; Yan, X. Construction of high spatial-temporal water body dataset in China based on Sentinel-1 archives and GEE. Remote Sens. 2020, 12, 2413. [Google Scholar] [CrossRef]
- Zhou, S.; Kan, P.; Silbernagel, J.; Jin, J. Application of image segmentation in surface water extraction of freshwater lakes using radar data. ISPRS Int. J. Geo-Inf. 2020, 9, 424. [Google Scholar] [CrossRef]
- Sekertekin, A. A Survey on global thresholding methods for mapping open water body using Sentinel-2 satellite imagery and normalized difference water index. Arch. Comput. Methods Eng. 2021, 28, 1335–1347. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Chen, B.; Zuo, J. An Object-Based Approach to Extract Aquaculture Ponds with 10-Meter Resolution Sentinel-2 Images: A Case Study of Wenchang City in Hainan Province. Remote Sens. 2024, 16, 1217. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, C.; Xu, W.; Liu, Y.; Su, D.; Qi, C.; Dong, Z. Water-land classification for single-wavelength airborne LiDAR bathymetry based on waveform feature statistics and point cloud neighborhood analysis. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103268. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Liang, C.; Wang, H.; Li, Z. High spatiotemporal resolution river networks map** on catchment scale using satellite remote sensing imagery and DEM data. Geophys. Res. Lett. 2024, 51, 2023GL107956. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, J.; Wang, Y.; Niu, Y.; Qian, H. Automatic Extraction Method of Landslide Based on Digital Elevation Model and Digital Orthophoto Map Data Combined in Complex Terrain. Appl. Sci. 2024, 14, 2771. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Chen, D.; Qi, S.; Zhou, Y.; Wang, F.; Cao, Y. Extracting water body data based on SDWI and threshold segmentation: A case study in permafrost area surrounding Salt Lake in Hoh Xil, Qinghai-Tibet Plateau, China. Res. Cold Arid. Reg. 2023, 15, 202–209. [Google Scholar] [CrossRef]
- Han, C.; Jia, C.; Sun, Y. Remote Sensing Monitoring and Disaster Assessment of Flood Based on Sentinel-1B Sar Data. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Tian, P.; Liu, Y.; Li, J.; Pu, R.; Cao, L.; Zhang, H.; Ai, S.; Yang, Y. Mapping coastal aquaculture ponds of China using Sentinel SAR images in 2020 and google earth engine. Remote Sens. 2022, 14, 5372. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Zhou, Y.; He, X.; He, M. Flood Monitoring Using Sentinel-1 SAR for Agricultural Disaster Assessment in Poyang Lake Region. Remote Sens. 2023, 15, 5247. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Xu, K.; Yu, J. Mapping large-scale aquaculture ponds in Jiangsu Province, China: An automatic extraction framework based on Sentinel-1 time-series imagery. Aquaculture 2024, 581, 740441. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Vancutsem, C.; Bastin, L.; Clerici, M.; Vanbogaert, E.; Bartholomé, E.; Defourny, P. A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens. Environ. 2014, 140, 704–716. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 2010, 115, D12111. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent Trends of Open-Surface Water Body Area in the Contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Li, A.; Lei, G.; Zhang, Z.; Nan, X. Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 162, 63–76. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Wu, C.S.; Chen, X.D.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.S.; Shen, H. An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 769–782. [Google Scholar] [CrossRef]
- Chen, N.; Yu, L.; Zhang, X.; Shen, Y.; Zeng, L.; Hu, Q.; Niyogi, D. Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sens. 2020, 12, 2992. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Wagner, W. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Wang, J. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Schaller, N.; Sillmann, J.; Müller, M.; Haarsma, R.; Hazeleger, W.; Hegdahl, T.J.; Kelder, T.; van den Oord, G.; Weerts, A.; Whan, K. The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather Clim. Extrem. 2020, 29, 100259. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Gong, P.; Wang, J.; Shi, J.; Zhu, Z. Construction of the 500-m resolution daily global surface water change database (2001–2016). Water Resour. Res. 2018, 54, 10270–10292. [Google Scholar] [CrossRef]
- Gao, C.; Cheng, D.; Iqbal, J.; Yao, S. Spatiotemporal change analysis and prediction of the great yellow river region (GYRR) land cover and the relationship analysis with mountain hazards. Land 2023, 12, 340. [Google Scholar] [CrossRef]
- Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S.D. Forest fire probability mapping in eastern Serbia: Logistic regression versus random forest method. Forests 2020, 12, 5. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a Landsat 8 scene of nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated extraction of surface water extent from Sentinel-1 data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, R.; Zhu, W. Conversion of Natural Wetland to Farmland in the Tumen River Basin: Human and Environmental Factors. Remote Sens. 2021, 13, 3498. [Google Scholar] [CrossRef]
- Purwanto, P.; Utaya, S.; Handoyo, B.; Bachri, S.; Astuti, I.S.; Utomo, K.S.B.; Aldianto, Y.E. Spatiotemporal analysis of COVID-19 spread with emerging hotspot analysis and space–time cube models in East Java, Indonesia. ISPRS Int. J. Geo-Inf. 2021, 10, 133. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression Tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, G.; Xu, Y.J.; Chen, S.; Wu, Y.; Gao, Z.; Yu, H. Human Activities and Climate Variability Affecting Inland Water Surface Area in a High Latitude River Basin. Water 2020, 12, 382. [Google Scholar] [CrossRef]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef]
- Yuan, R.; Li, Z.; Guo, S. Health risks of shallow groundwater in the five basins of Shanxi, China: Geographical, geological and human activity roles. Environ. Pollut. 2023, 316, 120524. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhang, X.; Wang, T.; Liang, J.; Ma, W.; Xie, J. Spatiotemporal impacts of climate change and human activities on blue and green water resources in northwest river basins of China. Ecol. Indic. 2024, 160, 111823. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Ma, Y.; Leng, M.; Zhao, W.; Zhang, C.; Yu, D.; Su, B. Relationships between Landscape Patterns and Hydrological Processes in the Subtropical Monsoon Climate Zone of Southeastern China. Remote Sens. 2023, 15, 2290. [Google Scholar] [CrossRef]
- Liu, C.; Zou, L.; Xia, J.; Chen, X.; Zuo, L.; Yu, J. Spatiotemporal Heterogeneity of Water Conservation Function and Its Driving Factors in the Upper Yangtze River Basin. Remote Sens. 2023, 15, 5246. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Tursun, A.; Wang, Y.; Jiang, F.; Zheng, B. Surface water expansion due to increasing water demand on the Loess Plateau. J. Hydrol. Reg. Stud. 2023, 49, 101485. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, R.; Zhao, L.; Lyu, B.; Wang, J.; Zhang, L. A contrarian growth: The spatiotemporal dynamics of open-surface water bodies on the northern slope of Kunlun Mountains. Ecol. Indic. 2023, 157, 111249. [Google Scholar] [CrossRef]
- Gautam, P.K.; Chandra, S.; Henry, P.K. Monitoring of the Groundwater Level using GRACE with GLDAS Satellite Data in Ganga Plain, India to Understand the Challenges of Groundwater, Depletion, Problems, and Strategies for Mitigation. Environ. Challenges 2024, 15, 100874. [Google Scholar] [CrossRef]
- Hussein, H.; Grandi, M. Contexts matter: A hydropolitical analysis of Blue Nile and Yarmouk River basins. Soc. Water Stud. Arab. Reg. 2015, 159, 159–176. [Google Scholar]
Date | Temporal Resolution | Data Sources |
---|---|---|
Sentinel-1 SAR | June to September 2015–2023 | GEE (https://earthengine.google.com/, accessed on 10 June 2024) |
Landsat 8 | June to August 2016 | GEE (https://earthengine.google.com/, accessed on 10 June 2024) |
Precipitation | June to August 2015–2023 | NOAA (https://www.psl.noaa.gov/data/gridded/index.html, accessed on 10 June 2024) |
Potential Evaporation | June to August 2015–2023 | University of BRISTOL (Hourly potential evapotranspiration (hPET) at 0.1 degs grid resolution for the global land surface from 1981–present—Datasets—data.bris) |
DEM | / | NASA and DLR (https://earthexplorer.usgs.gov/, accessed on 10 June 2024) |
Hydrological System | / | GRDC (https://grdc.bafg.de/GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html, accessed on 10 June 2024) |
Land Use Types | 2017–2022 | Impact Observatory (https://livingatlas.arcgis.com/landcoverexplorer/#mapCenter=28.77098%2C41.26723%2C11&mode=step&timeExtent=2017%2C2023&year=2023, accessed on 10 June 2024) |
Population Density | 2015–2020 | WorldPop (https://hub.worldpop.org/geodata/listing?id=76, accessed on 10 June 2024) |
Class | Ground Truth Points | User’s Accuracy (%) | Producer’s Accuracy (%) | ||
---|---|---|---|---|---|
Water | Non-Water | Total | |||
Water | 199 | 16 | 215 | 99.50 | 92.00 |
Non-Water | 1 | 184 | 185 | 92.56 | 99.46 |
Total | 200 | 200 | 400 | — | — |
Class | Ground Truth Points | User’s Accuracy (%) | Producer’s Accuracy (%) | ||
---|---|---|---|---|---|
Water | Non-Water | Total | |||
Water | 197 | 4 | 201 | 98.50% | 98.00% |
Non-Water | 3 | 196 | 199 | 98.01% | 98.49% |
Total | 200 | 200 | 400 | — | — |
Scale | Mean Squared Error | R2 |
---|---|---|
Sub-basin | 0.131 | 0.819 |
Grid | 0.027 | 0.853 |
Variable | VIF | |||||
---|---|---|---|---|---|---|
Sub-Basin Scale | Grid Scale | |||||
June–July | July–August | August–September | June–July | July–August | August–September | |
PRE | 2.79 | 2.00 | 1.61 | 2.51 | 1.87 | 1.41 |
PET | 3.74 | 1.29 | 1.87 | 3.49 | 1.47 | 2.58 |
Trees | 1.93 | 1.31 | 1.93 | 1.36 | 1.39 | 1.38 |
Paddy | 23.07 | 14.33 | 36.20 | 47.60 | 47.09 | 57.63 |
Bare | 2.06 | 1.80 | 2.03 | 1.66 | 1.61 | 1.61 |
Crops | 43.57 | 42.44 | 40.94 | 41.31 | 39.37 | 46.75 |
Built | 6.81 | 6.90 | 6.63 | 6.14 | 6.71 | 6.58 |
Rangeland | 22.55 | 19.74 | 32.22 | 40.55 | 38.90 | 48.12 |
POP | 4.56 | 2.24 | 3.21 | 3.03 | 2.95 | 3.04 |
DEM | 2.32 | 2.50 | 1.84 | 2.26 | 2.29 | 2.04 |
Slope | 3.44 | 4.90 | 3.40 | 4.28 | 4.82 | 4.23 |
Aspect | 4.18 | 5.23 | 4.73 | 1.08 | 1.09 | 1.11 |
River_dens | 1.50 | 1.53 | 1.80 | 1.26 | 1.42 | 2.14 |
Scale | Model Parameter | June–July | July–August | August–September | |||
---|---|---|---|---|---|---|---|
OLS | GWR | OLS | GWR | OLS | GWR | ||
Sub-Basin | AICc | 373.87 | 356.70 | 220.94 | 209.56 | 250.96 | 245.37 |
R2 | 0.075 | 0.355 | 0.120 | 0.467 | 0.107 | 0.300 | |
Adjusted R2 | 0.085 | 0.216 | 0.174 | 0.308 | 0.153 | 0.195 | |
Grid | AICc | 207.22 | 104.48 | 164.37 | 104.48 | –142.13 | –144.88 |
R2 | 0.078 | 0.491 | 0.138 | 0.581 | 0.172 | 0.470 | |
Adjusted R2 | 0.124 | 0.389 | 0.244 | 0.499 | 0.320 | 0.366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Quan, D.; Jin, R. Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023). Water 2024, 16, 2185. https://doi.org/10.3390/w16152185
Wu D, Quan D, Jin R. Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023). Water. 2024; 16(15):2185. https://doi.org/10.3390/w16152185
Chicago/Turabian StyleWu, Di, Donghe Quan, and Ri Jin. 2024. "Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023)" Water 16, no. 15: 2185. https://doi.org/10.3390/w16152185
APA StyleWu, D., Quan, D., & Jin, R. (2024). Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023). Water, 16(15), 2185. https://doi.org/10.3390/w16152185