Poplar P-RC APMP Effluent with Anaerobic Treatment: An Efficient Three-Stage Anaerobic Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Poplar P-RC APMP Wastewater
2.2. 3S-AR and UASB Reactor
2.3. Startup of 3S-AR and UASB Reactors
2.4. Experimental Parameters
2.5. Characterization
3. Results and Discussions
3.1. The Influence of Operation Parameters of the 3S-AR on the Pollutant Removal
3.2. Properties of Granular Sludge
3.3. Migration of the Pollutant in the Treatment of 3S-AR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, M.; Sun, M.; Chen, B.; Shi, L.; Jin, M.; Man, Y.; Liang, Z.; de Almeida, C.; Li, J.; Zhang, P.; et al. Country-specific net-zero strategies of the pulp and paper industry. Nature 2024, 626, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Sun, M.; Chen, B.; Xie, H.; Zhang, D.; Han, Z.; Yang, L.; Wang, Y. Advancing sustainability in China’s pulp and paper industry requires coordinated raw material supply and waste paper management. Resour. Conserv. Recycl. 2023, 198, 107162. [Google Scholar] [CrossRef]
- Majumder, S.; Moharana, S.; Kim, K.H. Cellulose nano-papers: A comprehensive review of their synthesis methods, applications, and influence on the circular economy. J. Clean. Prod. 2024, 451, 142045. [Google Scholar] [CrossRef]
- Esmaeeli, A.; Sarrafzadeh, M.; Zeighami, S.; Kalantar, M.; Bariki, S.G.; Fallahi, A.; Asgharnejad, H.; Ghaffari, S.-B. A comprehensive review on pulp and paper industries wastewater treatment advances. Ind. Eng. Chem. Res. 2023, 62, 8119–8145. [Google Scholar] [CrossRef]
- AJagaba; Birniwa, A.; Usman, A.; Mu’azu, N.; Yaro, N.; Soja, U.; Abioye, K.; Almahbashi, N.; Al-dhawi, B.; Noor, A. Trend and current practices of coagulation-based hybrid systems for pulp and paper mill effluent treatment: Mechanisms, optimization techniques and performance evaluation. J. Clean. Prod. 2023, 429, 139543. [Google Scholar] [CrossRef]
- An, X.; Cheng, Y.; Zang, H.; Li, C. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: Performance, genetic background, metabolic pathway and toxicity assessment. Environ. Pollut. 2023, 322, 121230. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Verma, P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. Environ. Res. 2023, 236, 116728. [Google Scholar] [CrossRef]
- Di, F.; Han, D.; Wan, J.; Wang, G.; Zhu, B.; Wang, Y.; Yang, S. New insights into toxicity reduction and pollutants removal during typical treatment of papermaking wastewater. Sci. Total Environ. 2024, 915, 169937. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhao, H.; Wei, G.; Zhu, Y.; Li, T.; Xu, M.; Guo, X.; Shi, H.; Lian, Y.; Liu, H. Sustainable Papermaking in China: Assessing Provincial Economic and Environmental Performance of Pulping Technologies. ACS Sustain. Chem. Eng. 2024, 12, 4517–4529. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, N.K.; Gera, P. Removal of color from pulp and paper mill wastewater-methods and techniques—A review. J. Environ. Manag. 2021, 298, 113527. [Google Scholar] [CrossRef]
- Xing, L.; Kong, M.; Xie, X.; Sun, J.; Wei, D.; Li, A. Feasibility and safety of papermaking wastewater in using as ecological water supplement after advanced treatment by fluidized-bed Fenton coupled with large-scale constructed wetland. Sci. Total Environ. 2020, 699, 134369. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Sharma, P.; Sirohi, R.; Awasthi, M.; Dussap, C.; Pandey, A. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.; Bilal, M.; Prasad, S.; Rameshwari, K.; Chandra, R. Paper and pulp mill wastewater: Characterization, microbial-mediated degradation, and challenges. In Nanotechnology in Paper and Wood Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 371–387. [Google Scholar]
- Meyer, T.; Edwards, E. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 2014, 65, 321–349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Thakur, I.; Shah, M. Bioremediation approaches for treatment of pulp and paper industry wastewater: Recent advances and challenges. In Microbial Bioremediation & Biodegradation; Springer: Singapore, 2020; pp. 1–48. [Google Scholar]
- Tian, T.; Yu, H. Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol. Adv. 2020, 44, 107610. [Google Scholar] [CrossRef]
- Zhu, T.; Su, Z.; Lai, W.; Zhang, Y.; Liu, Y. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Sci. Total Environ. 2021, 776, 145906. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Wang, H.; Yan, J.; Zhou, X.; Ren, N.; Lee, D.; Chen, C. Biological treatment of refractory pollutants in industrial wastewaters under aerobic or anaerobic condition: Batch tests and associated microbial community analysis. Bioresour. Technol. Rep. 2022, 17, 100927. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Wang, Q.; Wang, J.; Lei, Z.; Yuan, T.; Zhang, Z.; Lee, D. Energy and resource recovery from a future aerobic granular sludge wastewater treatment plant and benefit analysis. Chem. Eng. J. 2024, 487, 150558. [Google Scholar] [CrossRef]
- Bohra, V.; Ahamad, K.; Kela, A.; Vaghela, G.; Sharma, A.; Deka, B. Energy and resources recovery from wastewater treatment systems. In Clean Energy and Resource Recovery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 17–36. [Google Scholar]
- Chu, C.; Vo, T.; Chen, T. A novel of biohythane gaseous fuel production from pineapple peel waste juice in two-stage of continuously stirred anaerobic bioreactors. Fuel 2020, 279, 118526. [Google Scholar] [CrossRef]
- Shahid, M.; Kashif, A.; Rout, P.; Aslam, M.; Fuwad, A.; Choi, Y.; Park, J.; Kumar, G. A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J. Environ. Manag. 2020, 270, 110909. [Google Scholar] [CrossRef]
- Khanal, S.; Giri, B.; Nitayavardhana, S.; Gadhamshetty, V. Anaerobic bioreactors/digesters: Design and development. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–279. [Google Scholar]
- Show, K.; Yan, Y.; Yao, H.; Guo, H.; Li, T.; Show, D.; Chang, J.; Lee, D. Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications. Bioresour. Technol. 2020, 300, 122751. [Google Scholar] [CrossRef]
- Tawfik, A.; Bakr, M.; Nasr, M.; Haider, J.; Lim, H.; Qyyum, M.; Lam, S. Economic and environmental sustainability for anaerobic biological treatment of wastewater from paper and cardboard manufacturing industry. Chemosphere 2022, 289, 133166. [Google Scholar] [CrossRef] [PubMed]
- Bakraoui, M.; El Gnaoui, Y.; Lahboubi, N.; Karouach, F.; El Bari, H. Kinetic study and experimental productions of methane production from UASB reactor treating wastewater from recycled pulp and paper for the continuous test. Biomass Bioenergy 2020, 139, 105604. [Google Scholar] [CrossRef]
- del Castillo, A.; Garibay, M.; Senés-Guerrero, C.; Orozco-Nunnelly, D.; de Anda, J.; Gradilla-Hernández, M. A review of the sustainability of anaerobic reactors combined with constructed wetlands for decentralized wastewater treatment. J. Clean. Prod. 2022, 371, 133428. [Google Scholar] [CrossRef]
- Shi, J.; Wan, N.; Han, H. Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater. Environ. Pollut. 2022, 311, 119932. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, A.; Cheng, L.; Hussain, A.; Maiti, A. Occurrence of antibiotics in wastewater: Potential ecological risk and removal through anaerobic–aerobic systems. Environ. Res. 2023, 226, 115678. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.; Cirik, K.; Başak, S. Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. J. Environ. Chem. Eng. 2021, 9, 105596. [Google Scholar] [CrossRef]
- Iliopoulou, A.; Arvaniti, O.; Deligiannis, M.; Gatidou, G.; Vyrides, I.; Fountoulakis, M.A. Stasinakis, Combined use of strictly anaerobic MBBR and aerobic MBR for municipal wastewater treatment and removal of pharmaceuticals. J. Environ. Manag. 2023, 343, 118211. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, J.; Lohani, S. Design, installation, operation and experimentation of septic tank–UASB wastewater treatment system. Renew. Energy 2019, 143, 1406–1415. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, V.; Ormeci, B.; Hussain, A.; Cheng, L.; Venkiteshwaran, K. Anaerobic–aerobic treatment of wastewater and leachate: A review of process integration, system design, performance and associated energy revenue. J. Environ. Manag. 2023, 327, 116898. [Google Scholar] [CrossRef]
- Shin, C.; Tilmans, S.; Chen, F.; Criddle, C. Anaerobic membrane bioreactor model for design and prediction of domestic wastewater treatment process performance. Chem. Eng. J. 2021, 426, 131912. [Google Scholar] [CrossRef]
- Ghosh, S. Two-phase anaerobic digestion of high-metal-content municipal-industrial sludge. Biomass 1986, 10, 97–107. [Google Scholar] [CrossRef]
- Mou, A.; Yu, N.; Yang, X.; Liu, Y. Enhancing methane production and organic loading capacity from high solid-content wastewater in modified granular activated carbon (GAC)-amended up-flow anaerobic sludge blanket (UASB). Sci. Total Environ. 2024, 906, 167609. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, W.; Li, G.; Song, Q.; Ismail, M.; Wang, Y.; Ren, L.; Cheng, C. Anaerobic biodegradation of soybean-process wastewater: Operation strategy and sludge bed characteristics of a high-performance Spiral Symmetric Stream Anaerobic Bioreactor. Water Res. 2021, 197, 117095. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Ji, J.; Li, Y.; Kubota, K. Microbial characteristics in anaerobic membrane bioreactor treating domestic sewage: Effects of HRT and process performance. J. Environ. Sci. 2022, 111, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Song, X.; Ding, X.; Xia, R.; Lin, X.; Li, G.; Nghiem, L.D.; Luo, W. Antibiotic removal from swine farming wastewater by anaerobic membrane bioreactor: Role of hydraulic retention time. J. Membr. Sci. 2023, 677, 121629. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Meng, J.; Li, J.; Jha, A.; Zhang, Y.; Fan, Y.; Wang, X. Effects of reflux ratio on the anaerobic sludge and microbial social behaviors in an expanded granular sludge bed reactor: From the perspective of acyl-homoserine lactones-mediated quorum sensing. Bioresour. Technol. 2021, 337, 125360. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Zhao, X.; Wang, N.; Suo, Y.; Yuan, J.; Peng, Y. Redirecting carbon to recover VFA to facilitate biological short-cut nitrogen removal in wastewater treatment: A critical review. Water Res. 2023, 238, 120015. [Google Scholar] [CrossRef] [PubMed]
- Rivera, F.; Sepúlveda-Muñoz, C.; Prádanos, P.; Hernández, A.; Palacio, L.; Muñoz, R. Influence of pH on the performance of anaerobic piggery wastewater treatment coupled with membrane-based NH3 extraction. J. Water Process Eng. 2023, 55, 104226. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Yang, X.; Zhang, J.; Lu, B.; Chen, R. Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate. Chem. Eng. J. 2020, 396, 125366. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, X.; Chen, Y.; Liu, M.; Bao, X. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. J. Hazard. Mater. 2021, 402, 123471. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Y. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties. Chemosphere 2021, 262, 128033. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chen, Z.; Wang, X.; Wang, S.; Liu, L.; Yan, P.; Chen, Y.; Fang, F.; Guo, J. Effect of different feeding strategies on performance of aerobic granular sludge: From perspective of extracellular polymeric substances and microorganisms. J. Environ. Chem. Eng. 2024, 12, 111688. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, H.; Ma, F.; Zhang, J.; Ma, X.; You, S. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: Bio-functional interactions among metazoans, microbial communities and protein expression. Water Res. 2023, 228, 119361. [Google Scholar] [CrossRef] [PubMed]
- Nadaleti, W.; Gomes, J.; de Souza, E.; Santos, M.; Belli, P.; Borges, A.; Mohedano, R.; Libardi, N.; da Silva, F.M.R.; Correa, E. Biomethane and biohydrogen production from an anaerobic sludge used in the treatment of rice parboiling effluent: Specific methanogenic and hydrogenic activity. Int. J. Hydrog. Energy 2024, 60, 702–710. [Google Scholar] [CrossRef]
- Wang, D.; Pan, Q.; Yang, J.; Gong, S.; Liu, X.; Fu, Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. Environ. Sci. Technol. 2024, 58, 2598–2614. [Google Scholar] [CrossRef]
pH | Chemical Oxygen Demand (CODCr, mg/L) | Biochemical Oxygen Demand (BOD5, mg/L) | BOD5/ CODCr | Suspended Solid (SS, mg/L) | Total Suspended Solid (TS, mg/L) | Color (Time) | |
---|---|---|---|---|---|---|---|
effluent | 7.93 | 9530 | 4103 | 0.43 | 144 | 11311 | 200 |
Stage | Flow Rate (mL/h) | Ascending Velocity (m/h) | Hydraulic Retention Time (h) | Volume Loading Rate (gCOD/L·d) | Influent COD (mg/L) |
---|---|---|---|---|---|
1 | 116.5 | 1.68 | 12.36 | 15 | 7724 |
2 | 155.4 | 1.68 | 9.27 | 20 | 7724 |
3 | 170.8 | 1.68 | 8.43 | 22 | 7724 |
4 | 194.2 | 1.68 | 7.42 | 25 | 7724 |
5 | 217.5 | 1.68 | 6.62 | 28 | 7724 |
6 | 170.8 | 1.68 | 8.43 | 16 | 5620 |
7 | 170.8 | 1.68 | 8.43 | 20 | 7025 |
8 | 170.8 | 1.68 | 8.43 | 27 | 9530 |
9 | 138.5 | 1.68 | 10.40 | 22 | 9530 |
10 | 205.7 | 1.68 | 7.00 | 22 | 6416 |
11 | 239.6 | 1.68 | 6.01 | 22 | 5510 |
12 | 170.9 | 2.07 | 8.43 | 22 | 7724 |
13 | 170.9 | 1.33 | 8.43 | 22 | 7724 |
14 | 170.9 | 0.95 | 8.43 | 22 | 7724 |
Stage | Flow Rate (mL/h) | Ascending Velocity (m/h) | HRT (h) | Volume Loading Rate (gCOD/L·d) | Influent COD (mg/L) | COD (mg/L) | Total COD Removal Rate (%) | ||
---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | |||||||
1 | 116.5 | 1.68 | 12.36 | 15 | 7724 | 3781 | 2618 | 1483 | 80.8 |
2 | 155.4 | 1.68 | 9.27 | 20 | 7724 | 4173 | 2831 | 1622 | 79 |
3 | 170.8 | 1.68 | 8.43 | 22 | 7724 | 4300 | 3080 | 1693 | 78.09 |
4 | 194.2 | 1.68 | 7.42 | 25 | 7724 | 4593 | 3505 | 1787 | 76.87 |
5 | 217.5 | 1.68 | 6.62 | 28 | 7724 | 5083 | 3968 | 2092 | 72.91 |
6 | 170.8 | 1.68 | 8.43 | 16 | 5620 | 3135 | 2404 | 1144 | 79.64 |
7 | 170.8 | 1.68 | 8.43 | 20 | 7025 | 3805 | 2955 | 1505 | 78.58 |
8 | 170.8 | 1.68 | 8.43 | 27 | 9530 | 5409 | 4343 | 2223 | 76.68 |
9 | 138.5 | 1.68 | 10.4 | 22 | 9530 | 5019 | 3700 | 2171 | 77.22 |
10 | 205.7 | 1.68 | 7 | 22 | 6416 | 4012 | 3065 | 1691 | 73.64 |
11 | 239.6 | 1.68 | 6.01 | 22 | 5510 | 3919 | 3285 | 1902 | 65.49 |
12 | 170.9 | 2.07 | 8.43 | 22 | 7724 | 4399 | 3314 | 1792 | 76.8 |
13 | 170.9 | 1.33 | 8.43 | 22 | 7724 | 4209 | 3096 | 1676 | 78.31 |
14 | 170.9 | 0.95 | 8.43 | 22 | 7724 | 4272 | 3290 | 1842 | 76.15 |
Index | 1st Unit | 2nd Unit | 3rd Unit | Inoculation |
---|---|---|---|---|
R (mL/h) | 8.58 | 8.41 | 9.91 | 6.45 |
VSS (g/L) | 1.03 | 1.12 | 1.06 | 0.96 |
SMA (gCODCH4/gVSS·d) | 0.96 | 0.86 | 1.07 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Tian, Q.; Yang, R.; Zhu, J.; Guo, Q.; Liu, F.; Zheng, S.; Fang, G. Poplar P-RC APMP Effluent with Anaerobic Treatment: An Efficient Three-Stage Anaerobic Reactor. Water 2024, 16, 2173. https://doi.org/10.3390/w16152173
Ding L, Tian Q, Yang R, Zhu J, Guo Q, Liu F, Zheng S, Fang G. Poplar P-RC APMP Effluent with Anaerobic Treatment: An Efficient Three-Stage Anaerobic Reactor. Water. 2024; 16(15):2173. https://doi.org/10.3390/w16152173
Chicago/Turabian StyleDing, Laibao, Qingwen Tian, Ran Yang, Jinwei Zhu, Qi Guo, Fuping Liu, Sophia Zheng, and Guigan Fang. 2024. "Poplar P-RC APMP Effluent with Anaerobic Treatment: An Efficient Three-Stage Anaerobic Reactor" Water 16, no. 15: 2173. https://doi.org/10.3390/w16152173
APA StyleDing, L., Tian, Q., Yang, R., Zhu, J., Guo, Q., Liu, F., Zheng, S., & Fang, G. (2024). Poplar P-RC APMP Effluent with Anaerobic Treatment: An Efficient Three-Stage Anaerobic Reactor. Water, 16(15), 2173. https://doi.org/10.3390/w16152173