Green and Sustainable Biochar for Coastal Wetlands Management: A Review to Achieve In Situ Remediation by Artificial Intelligence
Abstract
:1. Introduction
2. Data Collection and Trends Analysis in Publication
3. Factors Influencing Biochar in Coastal Wetland Management
3.1. Feedstock
Feedstock | Production Conditions | Element (%) | Yield (%) | Ash (%) | Surface Area (m2/g) | pH | References | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Heating Rate (°C/min) | Duration Time (h) | C | H | O | N | ||||||
Biomass residue | 500 | 10 | 2 | 22.92 | 1.09 | - | 2.17 | - | - | - | 9.91 | [34] |
Food waste | 350 | - | 3 | 43.3 | 2.3 | 16.7 | 1.93 | 20 | - | 8.99 | 9.93 | [35] |
Food waste | 800 | 5 | 1.67 | 53.28 | 1.47 | 19.44 | 2.46 | 54.20 | 20.21 | 462.83 | - | [36] |
Mangrove | 600 | 35 | 4 | 52.44 | 0.41 | - | 0.97 | - | - | 6.11 | 6.68 | [37] |
Spartina alterniflora | 500 | 10 | 2 | 54.45 | 2.35 | 11.75 | 0.43 | 30.09 | 31 | 24.85 | 9.2 | [38] |
Phragmites australis | 600 | 5 | 2 | 50.39 | 1.93 | 8.98 | 2.46 | 40.52 | 36.24 | - | 9.58 | [22] |
Nelumbo nucifera | 600 | 10 | 2.5 | 73.79 | 1.96 | 12.76 | 1.47 | 38.07 | 9.78 | 24.15 | - | [39] |
Miscanthus | 450 | 50 | - | 68.4 | 4.7 | 20.1 | 0.6 | - | 6.1 | 0.27 | 7.2 | [40] |
Arundo donax L. | 600 | - | 2 | 77.10 | 2.16 | 11.97 | 0.79 | 30.5 | 10.75 | 50.05 | 10.41 | [41] |
Rice husk | 500 | 5 | 2 | 52.78 | 2.07 | 11.2 | 0.07 | 37.90 | - | 257.5 | 9.3 | [12] |
Rapeseed stem | 450 | 5 | 1 | 73.46 | 3.03 | 12.19 | 1.09 | - | 8.22 | 37.3 | - | [42] |
Poultry manure | 450 | - | 3 | 33.4 | - | - | 2.53 | - | 58.2 | - | 9.32 | [43] |
Cow manure | 550 | 15 | 1 | 49.91 | 1.82 | 13.16 | 2.11 | 38 | 33.0 | - | 12 | [44] |
Human manure | 600 | 15 | 0.67 | 37.9 | 1.8 | 56.4 | 2.9 | 31.2 | 10.7 | - | 10.7 | [45] |
Rabbit Manure | 300 | 3 | 1 | 31.3 | 3.3 | 12.1 | 2.1 | - | 50.6 | - | 8.6 | [46] |
3.2. Pyrolysis
3.3. Impact of Biochar Modification on Enhancing Contaminant Removal Efficiency
3.3.1. Physical Modification
3.3.2. Chemical Modification
3.3.3. Biomodification
4. Exploration the Role of Coastal Wetland-Biochar Application on Sediment Contaminants Behavior
4.1. Heavy Metals
4.2. Organic Contaminants
5. AI Usage in Coastal Wetlands Management
6. Exploring the Role of Biochar on Plants and Soil/Sediment, and Verifying its Safety in the Management of Coastal Wetlands
7. Conclusions and Exploration the Future Efforts of Biochar on Coastal Wetland Management
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, H.; Ye, J.; Wu, Y.; Zhang, M.; Peng, W.; Wang, H.; Tang, D. Evaluation and characterization of biochar on the biogeochemical behavior of polycyclic aromatic hydrocarbons in mangrove wetlands. Sci. Total Environ. 2023, 864, 161039. [Google Scholar] [CrossRef]
- Leng, Z.; Wu, Y.; Li, J.; Nie, Z.; Jia, H.; Yan, C.; Hong, H.; Wang, X.; Du, D. Phenolic root exudates enhance Avicennia marina tolerance to cadmium under the mediation of functional bacteria in mangrove sediments. Mar. Pollut. Bull. 2022, 185, 114227. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Lu, H.; Dai, M.; Hong, H.; Liu, J.; Yan, C. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments. Mar. Pollut. Bull. 2016, 109, 171–177. [Google Scholar] [CrossRef]
- Maletić, S.; Isakovski, M.K.; Sigmund, G.; Hofmann, T.; Hüffer, T.; Beljin, J.; Rončević, S. Comparing biochar and hydrochar for reducing the risk of organic contaminants in polluted river sediments used for growing energy crops. Sci. Total Environ. 2022, 843, 157122. [Google Scholar] [CrossRef]
- Ur Rehman, Z.; Junaid, M.F.; Ijaz, N.; Guo, M. Remediation methods of heavy metal contaminated soils from environmental and geotechnical standpoints. Sci. Total Environ. 2023, 867, 161468. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, Z.; Li, J.; Jia, H.; Yan, C.; Hong, H.; Wang, Q.; Lu, Y.; Du, D. Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands. Environ. Pollut. 2022, 292, 118399. [Google Scholar] [CrossRef]
- Chen, L. Invasive plants in coastal wetlands: Patterns and mechanisms. In Wetlands: Ecosystem Services, Restoration and Wise Use; Springer: Cham, Switzerland, 2019; pp. 97–128. [Google Scholar]
- Li, H.; Mao, D.; Wang, Z.; Huang, X.; Li, L.; Jia, M. Invasion of Spartina alterniflora in the coastal zone of mainland China: Control achievements from 2015 to 2020 towards the Sustainable Development Goals. J. Environ. Manag. 2022, 323, 116242. [Google Scholar] [CrossRef]
- Meng, W.; Feagin, R.A.; Innocenti, R.A.; Hu, B.; He, M.; Li, H. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China. Ecol. Eng. 2020, 143, 105670. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Zhang, J.; Dai, T.; Yi, H.; Chen, F.; Zhou, M.; Hou, H. Multiple environmental risk assessments of heavy metals and optimization of sludge dewatering: Red mud–reed straw biochar combined with Fe2+ activated H2O2. J. Environ. Manag. 2022, 316, 115210. [Google Scholar] [CrossRef]
- Xie, B.; Lu, F.; Han, G. Resource utilization of invasive Spartina alterniflora: A review. Chin. J. Eco-Agric. 2019, 27, 1870–1879. [Google Scholar]
- Li, Z.; Su, Q.; Xiang, L.; Yuan, Y.; Tu, S. Effect of pyrolysis temperature on the sorption of Cd (II) and Se (IV) by rice husk biochar. Plants 2022, 11, 3234. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, B.; He, Z.; Wang, S.; Salih, O.; Wang, Q. Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil. Energy 2018, 155, 1093–1101. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Qin, F.; Tang, B.; Zhang, H.; Shi, C.; Zhou, W.; Ding, L.; Qin, P. Potential use of Spartina alterniflora as forage for dairy cattle. Ecol. Eng. 2016, 92, 173–180. [Google Scholar] [CrossRef]
- Cai, J.F.; Zhang, L.; Zhang, Y.; Zhang, M.; Li, H.; Xia, H.; Kong, W.; Yu, F. Remediation of cadmium-contaminated coastal saline-alkaline soil by Spartina alterniflora derived biochar. Ecotoxicol. Environ. Saf. 2020, 205, 111172. [Google Scholar] [CrossRef]
- Meng, Z.; Mo, X.; Meng, W.; Hu, B.; Li, H.; Liu, J.; Lu, X.; Sparks, J.P.; Wang, Y.; Wang, Z.; et al. Biochar may alter plant communities when remediating the cadmium-contaminated soil in the saline-alkaline wetland. Sci. Total Environ. 2023, 899, 165677. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Da Silva Medeiros, D.C.C.; Nzediegwu, C.; Benally, C.; Messele, S.A.; Kwak, J.H.; Naeth, M.A.; Ok, Y.S.; Chang, S.X.; El-Din, M.G. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. Sci. Total Environ. 2022, 809, 151120. [Google Scholar] [CrossRef]
- Alliance for Innovation and Infrastructure. Advancing Conservation: Harnessing AI to Preserve Vital Wetlands; Alliance for Innovation and Infrastructure: Arlington, VA, USA, 2024. [Google Scholar]
- Lakshmi, D.; Akhil, D.; Kartik, A.; Gopinath, K.P.; Arun, J.; Bhatnagar, A.; Rinklebe, J.; Kim, W.; Muthusamy, G. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Sci. Total Environ. 2021, 801, 149623. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, J.; Wang, X.; Khan, M.B.; Lu, M.; Khan, K.Y.; Song, Y.; He, Z.; Yang, X.; Yan, B.; et al. Biochar from constructed wetland biomass waste: A review of its potential and challenges. Chemosphere 2022, 287, 132259. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The Terra Preta’phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bhattacharya, T.; Shaikh, W.A.; Roy, A.; Chakraborty, S.; Vithanage, M.; Biswas, J.K. Multifaceted applications of biochar in environmental management: A bibliometric profile. Biochar 2023, 5, 11. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Park, S.S.; Kang, S.P.; Lee, W.; Park, K.T.; Chun, D.H.; Rhim, G.B.; Hwang, S.M.; Youn, M.H.; Jeong, S.K. Determination of kinetic factors of CO2 mineralization reaction for reducing CO2 emissions in cement industry and verification using CFD modeling. Chem. Eng. J. 2021, 420, 129420. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Wang, L.; Ruan, S.; Chen, J.; Li, H.; Yang, J.; Mechtcherine, V.; Tsang, D.C.W. Biochar-augmented carbon-negative concrete. Chem. Eng. J. 2022, 431, 133946. [Google Scholar] [CrossRef]
- IPCC. Chapter 4: Strengthening and implementing the global response. In Summary for Policymakers—Global Warming of 1.5 °C; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Liang, J.; Tang, D.; Huang, L.; Chen, Y.; Ren, W.; Sun, J. High oxygen reduction reaction performance nitrogen-doped biochar cathode: A strategy for comprehensive utilizing nitrogen and carbon in water hyacinth. Bioresour. Technol. 2018, 267, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, J.; Wu, S. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis. Bioresour. Technol. 2016, 218, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Fang, Y.; Lai, W.; Xu, S.; Eric, L. Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renew. Energy 2022, 188, 465–475. [Google Scholar] [CrossRef]
- Bian, R.; Shi, W.; Luo, J.; Li, W.; Wang, Y.; Joseph, S.; Gould, H.; Zheng, J.; Zhang, X.; Liu, X.; et al. Copyrolysis of food waste and rice husk to biochar to create a sustainable resource for soil amendment: A pilot-scale case study in Jinhua, China. J. Clean. Prod. 2022, 347, 131269. [Google Scholar] [CrossRef]
- Huang, S.; Wang, T.; Chen, K.; Mei, M.; Liu, J.; Li, J. Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants. Waste Manag. 2020, 107, 211–218. [Google Scholar] [CrossRef]
- Jia, H.; Li, J.; Li, Y.; Lu, H.; Liu, J.; Yan, C. The remediation of PAH contaminated sediment with mangrove plant and its derived biochars. J. Environ. Manag. 2020, 268, 110410. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bai, J.; Lu, Q.; Zhang, G.; Wang, D.; Jia, J.; Guan, Y.; Yu, L. Pyrolysis temperature and feedstock alter the functional groups and carbon sequestration potential of Phragmites australis-and Spartina alterniflora-derived biochars. GCB Bioenergy 2021, 13, 493–506. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, T.; Tang, J.; Zheng, Z.; Wang, H.; Shao, Q.; Chen, G.; Li, Z.; Chen, Y.; Zhu, J. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ. Sci. Pollut. Res. 2018, 25, 11854–11866. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Purawat, S.; Rao, A.; Altintas, I. Modular performance prediction for scientific workflows using Machine Learning. Future Gener. Comput. Syst. 2021, 114, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, H.; Luo, Y.; Deng, X.; Herbert, S.; Xing, B. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ. Pollut. 2013, 174, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; O’connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Are, K.S.; Adelana, A.O.; Fademi, I.O.; Aina, O.A. Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agric. Nat. Resour. 2017, 51, 454–462. [Google Scholar] [CrossRef]
- Van Poucke, R.; Allaert, S.; Ok, Y.; Pala, M.; Ronsse, F.; Tack, F.M.G.; Meers, E. Metal sorption by biochars: A trade-off between phosphate and carbonate concentration as governed by pyrolysis conditions. J. Environ. Manag. 2019, 246, 496–504. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Zhang, Y.; Feng, R.; Mahmood, I.B. Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Waste Manag. 2014, 34, 1619–1626. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Méndez, A.; Paz-Ferreiro, J.; Gascó, G. The effects of rabbit manure-derived biochar on soil health and quality attributes of two mine tailings. Sustainability 2022, 14, 1866. [Google Scholar] [CrossRef]
- Ji, M.; Sang, W. The remediation potential of biochar derived from different biomass for typical pollution in agricultural soil. In Biochar in Agriculture for Achieving Sustainable Development Goals; Academic Press: Cambridge, MA, USA, 2022; pp. 71–83. [Google Scholar]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef] [PubMed]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Washington, DC, USA, 2015; Volume 23. [Google Scholar]
- Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K. Biochar production, activation and adsorptive applications: A review. Environ. Chem. Lett. 2021, 19, 2237–2259. [Google Scholar] [CrossRef]
- Wielgusz, K.; Praczyk, M.; Irzykowska, L.; Świerk, D. Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Ind. Crop. Prod. 2022, 175, 114245. [Google Scholar] [CrossRef]
- Videgain, M.; Manyà, J.J.; Vidal, M.; Correa, E.C.; Diezma, B.; García-Ramos, F.J. Influence of feedstock and final pyrolysis temperature on breaking strength and dust production of wood-derived biochars. Sustainability 2021, 13, 11871. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Mašek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of production conditions on the yield and environmental stability of biochar. Fuel 2013, 103, 151–155. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, X.; Ok, Y.S. The application of machine learning methods for prediction of metal sorption onto biochars. J. Hazard. Mater. 2019, 378, 120727. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Cao, C.; Quan, G.; Wang, M.; Zimmerman, A.R.; Gao, B. Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: Characteristics and adsorption performance. Bioresour. Technol. 2022, 355, 127274. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.; Han, X.; Ding, S.; Shan, Y.; Liu, Y. Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal. J. Hazard. Mater. 2020, 381, 120981. [Google Scholar] [CrossRef] [PubMed]
- Quan, Z.; Huang, W.; Liao, Y.; Liu, W.; Xu, H.; Yan, N.; Qu, Z. Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. Fuel 2019, 241, 451–458. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, H.; Chen, Y.; Wang, X.; Chen, H. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chem. Eng. J. 2014, 257, 20–27. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Bilad, M.R.; Zakaria, Z.Y.; Jagaba, A.H.; Ghaleb, A.A.S.; Mohammed, H.G. Pristine and magnetic kenaf fiber biochar for Cd2+ adsorption from aqueous solution. Int. J. Environ. Res. Public Health 2021, 18, 7949. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Xu, X.; Zhang, R.; Cui, M. Remediation of Cu (II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass. Environ. Sci. Pollut. Res. 2021, 28, 16408–16419. [Google Scholar] [CrossRef]
- Liang, M.; Ding, Y.; Zhang, Q.; Wang, D.; Li, H.; Lu, L. Removal of aqueous Cr (VI) by magnetic biochar derived from bagasse. Sci. Rep. 2020, 10, 21473. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, M.; Liu, Y.; Liu, N.; Tan, X.; Jiang, L.; Wen, J.; Hu, X.; Yin, Z. Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism. J. Taiwan Inst. Chem. Eng. 2019, 102, 330–339. [Google Scholar] [CrossRef]
- Wan, Z.; Cho, D.W.; Tsang, D.C.; Li, M.; Sun, T.; Verpoort, F. Concurrent adsorption and micro-electrolysis of Cr (VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ. Pollut. 2019, 247, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Chu, G.; Zhao, J.; Huang, Y.; Zhou, D.; Liu, Y.; Wu, M.; Peng, H.; Zhao, Q.; Pan, B.; Steinberg, C.E.W. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. Environ. Pollut. 2018, 240, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; He, L.; Zhang, X.; Wang, S.; Zhang, B.; Hsieh, L.; Yang, K.; Tong, M. Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment. Water Res. 2022, 211, 118006. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liang, G.; Zhang, X.; Cai, X.; Li, R.; Xie, X.; Wang, Z. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci. Total Environ. 2019, 688, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Faheem; Du, J.; Kim, S.H.; Hassan, M.A.; Irshad, S.; Bao, J. Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role. Environ. Sci. Pollut. Res. 2020, 27, 37286–37312. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Lee, Y.G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Kim, G.; Lee, C.; Chon, K. Enhanced adsorption capacities of fungicides using peanut shell biochar via successive chemical modification with KMnO4 and KOH. Separations 2021, 8, 52. [Google Scholar] [CrossRef]
- Huff, M.D.; Lee, J. Biochar-surface oxygenation with hydrogen peroxide. J. Environ. Manag. 2016, 165, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Younas, H.; Nazir, A.; Bareen, F.-E. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. Environ. Sci. Pollut. Res. 2022, 29, 57669–57687. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef]
- Rebah, F.B.; Mnif, W.; Siddeeg, S.M. Microbial Flocculants as an Alternative to Synthetic Polymers for Wastewater Treatment: A Review. Symmetry 2018, 10, 556. [Google Scholar] [CrossRef]
- Siddeeg, S.M. A novel synthesis of TiO2/GO nanocomposite for the uptake of Pb2+ and Cd2+ from wastewater. Mater. Res. Express 2020, 7, 025038. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Yin, D.; Peng, B.; Tan, C.; Liu, Y.; Tan, X.; Wu, S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J. Environ. Manag. 2015, 153, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Kong, W.; Liu, L.; Lin, K.; Li, H. Effects of harvest time and desalination of feedstock on Spartina alterniflora biochar and its efficiency for Cd2+ removal from aqueous solution. Ecotoxicol. Environ. Saf. 2021, 207, 111309. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cui, P.; Fang, G.; Gao, J.; Zhou, D.; Wang, Y. Sorption mechanism of zinc on reed, lignin, and reed-and lignin-derived biochars: Kinetics, equilibrium, and spectroscopic studies. J. Soils Sediments 2018, 18, 2535–2543. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Jin, F.; Wang, F.; McMillan, O.; Al-Tabbaa, A. Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. Environ. Sci. Pollut. Res. 2018, 25, 14626–14635. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Hao, H.; Zhang, C.; He, Z.; Yang, X. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci. Total Environ. 2016, 539, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Poo, K.M.; Son, E.-B.; Chang, J.S.; Ren, X.; Choi, Y.; Chae, K. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag. 2018, 206, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Tang, J.; Chen, J.; Zhang, Q. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance. Environ. Pollut. 2020, 256, 113436. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Tong, C.; Gao, J.; Xiao, R. Effects of wetland plant biochars on heavy metal immobilization and enzyme activity in soils from the Yellow River estuary. Environ. Sci. Pollut. Res. 2022, 29, 40796–40811. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Yuan, S.; Hong, M.; Zhang, L.; Huang, Q. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J. Hazard. Mater. 2020, 384, 121370. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.Y.; Liu, F.; Wang, L.; Ouyang, T.; Chang, C. Facile one-step synthesis of magnetically modified biochar with enhanced removal capacity for hexavalent chromium from aqueous solution. J. Taiwan Inst. Chem. Eng. 2017, 81, 414–418. [Google Scholar] [CrossRef]
- Dai, W.; Xu, M.; Zhao, Z.; Zheng, J.; Huang, F.; Wang, H.; Liu, C.; Xiao, R. Characteristics and quantification of mechanisms of Cd2+ adsorption by biochars derived from three different plant-based biomass. Arab. J. Chem. 2021, 14, 103119. [Google Scholar] [CrossRef]
- Jing, H.; Ji, L.; Wang, Z.; Guo, J.; Lu, S.; Sun, J.; Cai, L.; Wang, Y. Synthesis of ZnO nanoparticles loaded on biochar derived from spartina alterniflora with superior photocatalytic degradation performance. Nanomaterials 2021, 11, 2479. [Google Scholar] [CrossRef]
- Wu, B.; Xu, D.; Wang, H.; Xu, R.; Qin, N.; Han, J. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands. Environ. Res. 2022, 215, 114326. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wu, C.; Lyu, G.; Li, M. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Sci. Total Environ. 2021, 798, 149191. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Xie, H.; Hu, Z.; Liang, S.; Ngo, H.H.; Guo, W.; Chen, X.; Fan, J.; Zhao, C. Intensive removal of PAHs in constructed wetland filled with copper biochar. Ecotoxicol. Environ. Saf. 2020, 205, 111028. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, Q.; Liu, G.; Luo, X.; Li, F.; Zhang, Y.; Wang, Z. Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Sci. Total Environ. 2019, 657, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wu, Y.; Daolin, D.; Yuan, B.; Zhou, Z. Effects of different order spiking on bioavailability and ecological risk of phenanthrene in mangrove sediment-biochar system. Ecotoxicol. Environ. Saf. 2021, 228, 112951. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Arias, M.E.; Ergas, S.J. Hybrid constructed wetlands amended with zeolite/biochar for enhanced landfill leachate treatment. Ecol. Eng. 2023, 192, 106990. [Google Scholar] [CrossRef]
- Jia, H.; Wang, H.; Lu, H.; Jiang, S.; Dai, M.; Liu, J.; Yan, C. Rhizodegradation potential and tolerance of Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments. Mar. Pollut. Bull. 2016, 110, 112–118. [Google Scholar]
- Wang, Z.; Xu, C.; Lu, Y.; Chen, X.; Yuan, H.; Wei, G.; Ye, G.; Chen, J. Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sens. Actuators B Chem. 2017, 241, 1324–1330. [Google Scholar] [CrossRef]
- Yaseen, Z.M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 2021, 277, 130126. [Google Scholar] [CrossRef]
- Qiao, K.; Tian, W.; Bai, J.; Dong, J.; Zhao, J.; Gong, X.; Liu, S. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicol. Environ. Saf. 2018, 149, 80–87. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Cai, J.F.; Jiang, F.; Liu, X.S.; Sun, K.; Wang, W.; Zhang, M.; Li, H.; Xu, H.; Kong, W.; Yu, F. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Sci. Total Environ. 2021, 788, 147707. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Li, M.; Lou, Z.; Wang, Y.; Liu, Q.; Zhang, Y.; Zhou, J.; Qian, G. Alkali and alkaline earth metallic (AAEM) species leaching and Cu (II) sorption by biochar. Chemosphere 2015, 119, 778–785. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, G.X.; Wu, Y.F.; Dai, W.; Xu, Q.; Gan, S.; Ju, X.; Feng, Z.; Li, R.; Yuan, B. Evaluation of negative effect of naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis. Chemosphere 2023, 318, 137909. [Google Scholar] [CrossRef]
Province | 2015 | 2018 | 2020 | |||
---|---|---|---|---|---|---|
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | |
Hebei | 0 | 0 | 128 | 0.24 | 520 | 1.0 |
Tianjin | 436 | 0.8 | 331 | 0.62 | 156 | 0.3 |
Shandong | 2510 | 4.6 | 3567 | 6.69 | 6184 | 11.9 |
Jiangsu | 18339 | 33.6 | 17490 | 32.8 | 16163 | 31.1 |
Shanghai | 10097 | 18.5 | 9124 | 17.11 | 9095 | 17.5 |
Zhejiang | 14354 | 26.3 | 12696 | 23.81 | 9355 | 18.0 |
Fujian | 7259 | 13.3 | 7743 | 14.52 | 7847 | 15.1 |
Guangdong | 764 | 1.4 | 1109 | 2.08 | 1299 | 2.5 |
Guangxi | 818 | 1.5 | 1114 | 2.09 | 1299 | 2.5 |
Total | 54,580 | 100 | 53,324 | 100 | 51,970 | 100 |
Contaminants | Biochar Types | Experiment Conditions | Elemental Composition % | Removal Efficiency | Removal/Adsorption-Mechanisms | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Species | Feedstock | Tp (°C) | Sorbent Dosage | Concentration | C | N | H | O | |||
Inorganic | Cd2+ | Spartina alterniflora | 350 | 1, 5 and 10% | 2.73 mg⋅kg−1 | 65.51 | 0.81 | 4.14 | 15.17 | 26.9% | Physical adsorption and Cd reaction with certain organic functional groups | [16] |
450 | 69.80 | 0.88 | 3.07 | 10.37 | - | |||||||
550 | 70.71 | 0.72 | 2.19 | 5.59 | - | |||||||
650 | 71.18 | 0.66 | 1.34 | 6.51 | - | |||||||
Inorganic | Cd2+ | Spartina alterniflora | 450 | 0–0.1 g | 0–50 mg L−1 | 69.80 | 0.88 | 3.07 | 10.47 | 16.29–32.34 mg kg−1 | Precipitation and Van der Waals force | [77] |
Inorganic | Cu2+ | Reed | 600 | 1.2 g | 10–200 mg⋅kg−1 | - | - | - | - | >50% | Physical adsorption, ion exchange, electrostatic adsorption, surface complexation, and precipitation | [85] |
Gladiolus | 600 | 1.2 g | - | - | - | - | >50% | |||||
Inorganic | Cu2+and Pb2+ | Phragmites australis | 500 | 0–2% | 200 mg L−1 Pb2+, 5 mg L−1 Cu2+ | 43.51 | 10.23 | - | 46.26 | 82.15% 84.94% | Oxygen-containing functional groups and a large number of cations (Ca2+, K+) | [84] |
Suaeda salsa | 500 | 0–2% | 58.04 | 0.92 | - | 35.04 | >90%, >90% | |||||
Tamarix chinensis | 500 | 0–2% | 36.17 | 7.05 | - | 56.78 | 61.74% 96.19% | |||||
Inorganic | Cd2+ | Spartina alterniflora | 450 | 0–10% | 3 mg⋅kg−1 | 84.67 | 0.10 | 3.52 | - | - | Precipitation/coprecipitation and specific chemisorption | [82] |
Inorganic | Cd, Cr, Cu, Pb, and Zn | Reed | 800 | - | mix | - | - | - | - | - | Oxygen-containing functional groups and electrostatic attraction | [83] |
Inorganic | Cd2+ | Vetiver grass | 400 | 20 mg | 0–320 mg L−1 | 62.06 | 1.29 | 2.01 | 15.24 | 33.1 mg g−1 | Electrostatic adsorption, surface complexation, and precipitation | [86] |
Organic | Malachite green | Spartina alterniflora | 800 | 40 mg | 400 mg L−1 | - | - | - | - | 98.38% | A large number of hydroxyl functional groups on the biochar surface | [87] |
Organic | Diclofenac | Reed | - | - | 0.05 mg L−1 | - | - | - | - | 95% | Physical adsorption and oxygen–functional group binding | [88] |
Organic | Prfluoroalkyl acid | Phragmites australis | 500 | 2 mg | 100–250,000 μg L−1 | - | - | - | - | - | Physical adsorption, hydrophobic adsorption | [89] |
700 | 2 mg | - | - | - | - | - | ||||||
900 | 2 mg | - | - | - | - | >80% | ||||||
Organic | PAHs | Mangrove plant | 400 | 2 mg | 0.5–16 mg L−1 | 43.26 | 1.34 | 0.54 | 39.21 mg g−1 | Physical adsorption, hydrophobic adsorption | [37] | |
600 | 2 mg | 52.44 | 0.97 | 0.41 | - | 42.23 mg g−1 | ||||||
Organic | PAHs | Arundo donax/ CuO | 500 | 40% | - | 75.04 | 1.89 | - | 22.28 | 94.09% | Complex absorption, hydrophobic adsorption, and electrostatic attraction | [90] |
Organic | Chlorpyrifos and chlorpyrifos-methyl | Reed | 300 | 0.5–1 mg | 0–1 mgL−1 Chlorpyrifos, 0–4 mg L−1 chlorpyrifos -methyl | 65.26 | 0.64 | 4.51 | 21.03 | Optimal removal 21.8 mg g−1 50.50 mg g−1 | Hydrophobic interaction and π–π interaction | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Fan, X.; Jia, H.; Peng, W.; Ren, G.; Du, D. Green and Sustainable Biochar for Coastal Wetlands Management: A Review to Achieve In Situ Remediation by Artificial Intelligence. Water 2024, 16, 1966. https://doi.org/10.3390/w16141966
Zhang M, Fan X, Jia H, Peng W, Ren G, Du D. Green and Sustainable Biochar for Coastal Wetlands Management: A Review to Achieve In Situ Remediation by Artificial Intelligence. Water. 2024; 16(14):1966. https://doi.org/10.3390/w16141966
Chicago/Turabian StyleZhang, Mengqi, Xue Fan, Hui Jia, Weihua Peng, Guangqian Ren, and Daolin Du. 2024. "Green and Sustainable Biochar for Coastal Wetlands Management: A Review to Achieve In Situ Remediation by Artificial Intelligence" Water 16, no. 14: 1966. https://doi.org/10.3390/w16141966
APA StyleZhang, M., Fan, X., Jia, H., Peng, W., Ren, G., & Du, D. (2024). Green and Sustainable Biochar for Coastal Wetlands Management: A Review to Achieve In Situ Remediation by Artificial Intelligence. Water, 16(14), 1966. https://doi.org/10.3390/w16141966