Assessing the Impacts of Land Use on Water Quality in the Acacias River Basin, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Land Use on The Basin Scale
2.3. Water Sampling and Analytical Methods
2.4. Statistical Analysis
2.5. Water Quality Index
- NSF-WQI = National Sanitation Foundation-Water Quality Index
- SIi = (i) Subscript of each parameter
- Wi = (i) Weighting factor for each subscript
3. Results and Discussion
3.1. Water Quality Evaluation
3.2. Principal Component Analysis
3.3. Water Quality Evaluation Using the Water Quality Index
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoekstra, A.Y. The global dimension of water governance: Why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 2010, 3, 21–46. [Google Scholar] [CrossRef]
- Catarino, A.; Martins, I.; Mourinha, C.; Santos, J.; Tomaz, A.; Anastácio, P.; Palma, P. Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal). Water 2024, 16, 514. [Google Scholar] [CrossRef]
- Yan, T.; Shen, S.L.; Zhou, A. Indices and models of surface water quality assessment: Review and perspectives. Environ. Pollut. 2022, 308, 119611. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.D.S.; Rodrigues, L.R.; Calheiros, C.S.C. Influence of Land Use and Land Cover on the Quality of Surface Waters and Natural Wetlands in the Miranda River Watershed, Brazilian Pantanal. Appl. Sci. 2024, 14, 5666. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Davies, P.M. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive of the Council of December 12, 1991, Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC); European Commission: Brussels, Belgium, 1991; pp. 1–8. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for the Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000; pp. 1–72. [Google Scholar]
- European Union. Directive 2006/118/EC on the protection of groundwater against pollution and deterioration Directive 2006/118/EC of the European Parliament and of the Council. Off. J. Eur. Union 2006, 372, 19–31. [Google Scholar]
- Damo, R.; Icka, P. Evaluation of water quality index for drinking water. Pol. J. Environ. Stud. 2013, 22, 1045–1051. [Google Scholar]
- Selemani, J.R.; Zhang, J.; Muzuka, A.N.; Njau, K.N.; Zhang, G.; Maggid, A.; Pradhan, S. Seasonal water chemistry variability in the Pangani River basin, Tanzania. Environ. Sci. Pollut. Res. 2017, 24, 26092–26110. [Google Scholar] [CrossRef] [PubMed]
- Ngoye, E.; Machiwa, J.F. The Influence of land-use patterns in the Ruvu river on water quality in the river system. Phys. Chem. Earth 2004, 29, 1161–1166. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; You, L.; Huang, G.; Xu, X.; Wang, X. Optimizing effluent trading and risk management schemes considering dual risk aversion for an agricultural watershed. Agric. Water Manag. 2022, 269, 107716. [Google Scholar] [CrossRef]
- Zampella, R.A.; Procopio, N.A.; Lathrop, R.G.; Dow, C.L. Relationship of land-use/land-cover patterns and surface-water quality in the Mullica river basin. J. Am. Water Resour. Assoc. 2007, 43, 594–604. [Google Scholar] [CrossRef]
- Bu, H.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar] [CrossRef]
- Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Meng, F.; Wang, Y.; Zhang, L.; Yang, Q.; Jiangm, M. The Impacts of Land Use Patterns on Water Quality in a Trans-Boundary River Basin in Northeast China Based on Eco-Functional Regionalization. Int. J. Environ. Res. Public Health 2018, 29, 1872. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Song, X.; Shao, G.; Hu, T. Effects of land use on stream water quality in the rapidly urbanized areas: A multiscale analysis. Water 2020, 12, 1123. [Google Scholar] [CrossRef]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Mei, K.; Dahlgren, R.A.; Wang, T.; Gong, J.; Zhang, M. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci. Total Environ. 2016, 572, 450–466. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-González, J.M.; Mahecha-Pulido, M.P.; Torres-Mora, M.A.; Brevik, E.C.; Keesstra, S.D.; Jiménez-Ballesta, R. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture 2017, 7, 52. [Google Scholar] [CrossRef]
- Samways, D. Population and Sustainability: Reviewing the Relationship Between Population Growth and Environmental Change. J. Popul. Sustain. 2022, 6, 15–41. [Google Scholar] [CrossRef]
- de Mello, K.; Valente, R.A.; Randhir, T.O.; dos Santos, A.C.A.; Vettorazzi, C.A. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed versus riparian zone. Catena 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Umwali, E.D.; Kurban, A.; Isabwe, A.; Mind’je, R.; Azadi, H.; Guo, Z.; Sabirhazi, G. Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi. Sci. Rep. 2021, 11, 17376. [Google Scholar] [CrossRef]
- León-Alfaro, Y. Analysis of Forest Fragmentation and Connectivity in the Sub-Basin of the Tapezco River, Costa Rica: Connecting the Forest to Protect Water. Cuad. Geogr. Rev. Colomb. Geogr. 2019, 28, 102–120. [Google Scholar] [CrossRef]
- Woli, K.P.; Nagumo, T.; Kuramochi, K.; Hatano, R. Evaluating River water quality through land use analysis and N budget approaches in livestock farming areas. Sci. Total Environ. 2004, 329, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, F.; Du, J.; Chen, D.; Zhang, W. Impacts of land use at multiple buffer scales on seasonal water quality in a reticular river network area. PLoS ONE 2021, 16, e0244606. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H.T. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. Res. 2022, 29, 56887–56907. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Lee, S.W.; Cho, K.H.; Ki, S.J.; Cha, S.M.; Kim, J.H. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan River basin. Water Res. 2010, 44, 4143–4157. [Google Scholar] [CrossRef] [PubMed]
- Huerfano-Moreno, G.J.; Rojas-Peña, J.I.; Zapata-Muñoz, Y.L.; Trujillo-González, J.M.; Torres-Mora, M.A.; García-Navarro, F.J.; Jiménez-Ballesta, R. Comparative Assessment of the Quality and Potential Uses of Groundwater in a Typical Rural Settlement in Colombia. Water 2023, 15, 667. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Q.; Yuan, B. Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecol. Indic. 2022, 135, 108561. [Google Scholar] [CrossRef]
- Silva-García, J.T.; Cruz-Cárdenas, G.; Moncayo-Estrada, R.; Ochoa-Estrada, S.; Villalpando-Barragán, F.; Ceja-Torres, L.F.; Álvarez-Bernal, D. Integral Index of Water Quality: A New Methodological Proposal for Surface Waters. Water 2023, 15, 1414. [Google Scholar] [CrossRef]
- Corredor, J.A.G.; Pérez, E.H.; Figueroa, R.; Casas, A.F. Water quality of streams associated with artisanal gold mining; Suárez, Department of Cauca, Colombia. Heliyon 2021, 7, e07047. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2009; Volume 1. [Google Scholar]
- Benkov, I.; Varbanov, M.; Venelinov, T.; Tsakovski, S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water 2023, 15, 1961. [Google Scholar] [CrossRef]
- IBM SPSS Statistics for Windows; IBM Corp: Armonk, NY, USA, 2017.
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index-do we dare. Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Saifullah, A.S.M.; Kamal, A.H.M.; Idris, M.H.; Rajaee, A.H.; Bhuiyan, M.K.A.; Hoque, M.N. Inter-linkage among some physico-chemical and biological factors in the tropical mangrove estuary. Zool. Ecol. 2016, 26, 141–149. [Google Scholar] [CrossRef]
- Lkr, A.; Singh, M.R.; Puro, N. Assessment of water quality status of Doyang river, Nagaland, India, using water quality index. Appl. Water Sci. 2020, 10, 46. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Mir, Z.A.; Bakhtiyar, Y.; Arafat, M.Y.; Khan, N.A.; Parveen, M. Spatiotemporal variation of physicochemical parameters in Aripal and Watalara streams of Kashmir Himalaya using multivariate statistical techniques. Environ. Monit. Assess. 2023, 195, 743. [Google Scholar] [CrossRef] [PubMed]
- Bora, M.; Goswami, D.C. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Appl. Water Sci. 2017, 7, 3125–3135. [Google Scholar] [CrossRef]
- Ansari, A.; Kumar, A. Water quality assessment of Ganga River along its course in India. Innov. Infrastruct. Solut. 2022, 7, 1–9. [Google Scholar] [CrossRef]
- Shah, K.A.; Joshi, G.S. Evaluation of water quality index for River Sabarmati, Gujarat, India. Appl. Water Sci. 2015, 7, 1349–1358. [Google Scholar] [CrossRef]
- Aydin, H.; Ustaoğlu, F.; Tepe, Y.; Soylu, E.N. Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environ. Forensics 2021, 22, 270–287. [Google Scholar] [CrossRef]
- Ghosh, P.; Panigrahi, A.K. Evaluation of water quality of Mundeswari River in eastern India: A water quality index (WQI) based approach. J. Appl. Nat. Sci. 2023, 15, 379–390. [Google Scholar] [CrossRef]
- Silva, M.I.; Gonçalves, A.M.L.; Lopes, W.A.; Lima, M.T.V.; Costa, C.T.F.; Paris, M.; De Paula Filho, F.J. Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. J. Hydrol. 2021, 598, 126346. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y.; Taş, B. Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic. 2020, 113, 105815. [Google Scholar] [CrossRef]
- Jaybhaye, R.; Nandusekar, P.; Awale, M.; Paul, D.; Kulkarni, U.; Jadhav, J.; Kamble, P. Analysis of seasonal variation in surface water quality and water quality index (WQI) of Amba River from Dolvi Region, Maharashtra, India. Arab. J. Geosci. 2022, 15, 1261. [Google Scholar] [CrossRef]
- Yang, H.J.; Shen, Z.M.; Zhang, J.P.; Wang, W.H. Water quality characteristics along the course of the Huangpu River (China). J. Environ. Sci. 2007, 19, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Gaur, N.; Sarkar, A.; Dutta, D.; Gogoi, B.J.; Dubey, R.; Dwivedi, S.K. Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India. Sci. Rep. 2022, 12, 11698. [Google Scholar] [CrossRef]
- Shil, S.; Singh, U.K.; Mehta, P. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Appl. Water Sci. 2019, 9, 1–21. [Google Scholar] [CrossRef]
- Pantha, S.; Timilsina, S.; Pantha, S.; Manjan, S.K.; Maharjan, M. Water quality index of springs in mid-hill of Nepal. Environ. Chall. 2022, 9, 100658. [Google Scholar] [CrossRef]
- Zaghloul, G.Y.; Zaghloul, A.Y.; Hamed, M.A.; El-Moselhy, K.M.; El-Din, H.M.E. Water quality assessment for Northern Egyptian lakes (Bardawil, Manzala, and Burullus) using NSF-WQI index. Reg. Stud. Mar. Sci. 2023, 64, 103010. [Google Scholar] [CrossRef]
- Çankaya, Ş.; Varol, M.; Bekleyen, A. Hydrochemistry, water quality and health risk assessment of streams in Bismil plain, an important agricultural area in southeast Türkiye. Environ. Pollut. 2023, 331, 121874. [Google Scholar] [CrossRef]
- Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.M.; Swinscoe, T.H. Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water 2017, 9, 558. [Google Scholar] [CrossRef]
- Delgado-García, S.M.; Trujillo-González, J.M.; Torres-Mora, M.A. Gestión del agua en comunidades rurales; caso de estudio Cuenca del río Guayuriba, Meta-Colombia. Luna Azul. 2017, 45, 59–70. [Google Scholar] [CrossRef]
- Knorr, S.; Weisener, C.G.; Phillips, L.A. Agricultural land management alters the biogeochemical cycling capacity of aquatic and sediment environments. Agric. Ecosyst. Environ. 2023, 357, 108661. [Google Scholar] [CrossRef]
- Barakat, A.; Meddah, R.; Afdali, M.; Touhami, F. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Phys. Chem. Earth Parts A/B/C 2018, 104, 39–46. [Google Scholar] [CrossRef]
- Beshiru, A.; Okareh, O.T.; Chigor, V.N.; Igbinosa, E.O. Assessment of water quality of rivers that serve as water sources for drinking and domestic functions in rural and pre-urban communities in Edo North, Nigeria. Environ. Monit. Assess. 2018, 190, 1–12. [Google Scholar] [CrossRef]
- Prabagar, S.; Thuraisingam, S.; Prabagar, J. Sediment analysis and assessment of water quality in spacial variation using water quality index (NSFWQI) in Moragoda canal in Galle, Sri Lanka. Waste Manag. Bull. 2023, 1, 15–20. [Google Scholar] [CrossRef]
- Gbekley, E.H.; Komi, K.; Houedakor, K.Z.; Poli, S.; Kpoezou, K.; Adjalo, D.K.; Adjoussi, P. The Physico-Chemical and Bacteriological Characterization of Domestic Wastewater in Adétikopé (Togo, West Africa). Sustainability 2023, 15, 13787. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, Y.; He, W.; Li, X.; Cui, J. Identifying the Influencing Factors of Plastic Film Mulching on Improving the Yield and Water Use Efficiency of Potato in the Northwest China. Water 2023, 15, 2279. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Giridharan, L.; Venugopal, T.; Jayaprakash, M. Identification and evaluation of hydrogeochemical processes on river Coum, South India. Environ. Monit. Assess. 2010, 162, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Subramani, T.; Rajmohan, N.; Elango, L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ. Monit. Assess. 2010, 162, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Blanquicet, Y.A.; Barreto-Montenegro, J.C.; Zapata-Muñoz, Y.L.; Hernández-Herrera, S.M.; Rojas-Peña, J.I.; Trujillo-González, J.M.; Serrano-Gómez, M. Fitoperifiton asociado al río Acacias-Pajure en la Orinoquia colombiana. Biota Colomb. 2023, 24, 1–8. [Google Scholar] [CrossRef]
- Vera-Parra, N.F.; Marciales-Caro, L.J.; Otero-Paternina, A.M.; Cruz-Casallas, P.E.; Velasco-Santamaría, Y.M. Impacto del agua asociada a la producción de una explotación petrolera sobre la comunidad fitoperifítica del rio Acacias (Meta, Colombia) durante la temporada de lluvias. Orinoquia 2011, 15, 31–40. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
Station | Altitude (m.a.s.l.) | Geographical Coordinates | Land Uses | |
---|---|---|---|---|
1 | 744 | 3°57′35.0″ N | 73°49′10.4″ W | Low intervention area |
2 | 523 | 3°58′15.8″ N | 73°46′13.4″ W | Low intervention area |
3 | 496 | 3°58′47.3″ N | 73°44′52.1″ W | Urban area |
4 | 491 | 3°58′53.1″ N | 73°44′38.6″ W | Urban area |
5 | 421 | 3°57′22.3″ N | 73°40′5.7″ W | Agricultural and industrial area |
6 | 412 | 3°57′16.7″ N | 73°39′46.8″ W | Agricultural and industrial area |
7 | 259 | 3°52′06.4″ N | 73°23′25.2″ W | Agricultural areas |
8 | 257 | 3°51′59.6″ N | 73°23′15.0″ W | Agricultural areas |
9 | 245 | 3°51′52.6″ N | 73°18′58.4″ W | Agricultural areas |
10 | 239 | 3°51′45.8″ N | 73°18′40.4″ W | Urban area |
11 | 214 | 3°52′25.1″ N | 73°14′10.6″ W | Agricultural areas |
12 | 200 | 3°53′12.8″ N | 73°06′50.0″ W | Low intervention area |
Description | Range | Color |
---|---|---|
Excellent | 91–100 | |
Good | 71–90 | |
Medium | 51–70 | |
Bad | 26–50 | |
Very Bad | 0–25 |
Parameters | Units | Mean ± SD | Max. | Min. | CV% | [33] |
---|---|---|---|---|---|---|
Dissolved Oxygen | mg O2 L−1 | 6.55 ± 0.32 | 6.85 | 5.56 | 4.92 | 4.0–6.0 |
Fecal Coliforms | MPN 100 mL−1 | 2.7 × 104 * ± 6.81 × 105 | 2.4 × 106 | 2.7 × 101 | 2.52 × 102 | 0 |
pH | pH units | 6.38 ± 0.31 | 6.71 | 5.64 | 4.93 | 6.5–8.5 |
BOD5 | mg O2 L−1 | 3.45 ± 3.91 | 13.70 | 0.85 | 113.06 | 6.0 |
Nitrates | mg NO3− L−1 | 0.18 * ± 0.11 | 0.47 | 0.06 | 60.03 | 50.0 |
Phosphates | mg PO43− L−1 | 0.42 ± 0.43 | 1.43 | 0.04 | 104.03 | - |
Temperature | °C | 25.58 ± 2.10 | 28.20 | 20.52 | 8.22 | 12–25 |
Turbidity | NTU | 49.87 ± 77.55 | 302.00 | 6.17 | 155.49 | 1.0 |
Total Solids | mg L−1 | 90.48 ± 81.58 | 354.00 | 31.00 | 90.17 | 500 |
DO | F Col. | pH | BOD5 | NO3− | PO43− | Temp | Turb | TS | |
---|---|---|---|---|---|---|---|---|---|
DO | 1 | ||||||||
F Col. | −0.573 | 1 | |||||||
pH | −0.077 | 0.084 | 1 | ||||||
BOD5 | −0.343 | 0.699 * | −0.224 | 1 | |||||
NO3− | 0.084 | −0.168 | 0.480 | −0.112 | 1 | ||||
PO43− | −0.441 | 0.832 * | 0.049 | 0.685 * | 0.070 | 1 | |||
Temp | 0.210 | −0.203 | 0.566 | −0.329 | 0.760 * | −0.203 | 1 | ||
Turb | −0.105 | −0.266 | 0.231 | −0.392 | 0.007 | −0.434 | 0.392 | 1 | |
TS | −0.336 | 0.112 | 0.364 | −0.252 | 0.007 | −0.126 | 0.406 | 0.902 * | 1 |
Parameters | Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
DO | −0.706 | −0.459 | −0.034 |
F Col | 0.753 | 0.271 | −0.023 |
pH | −0.294 | 0.677 | 0.467 |
BOD5 | 0.939 | 0.305 | 0.07 |
NO3− | −0.259 | 0.044 | 0.804 |
PO43− | 0.924 | 0.245 | 0.248 |
Temp | −0.521 | 0.517 | 0.578 |
Turb | −0.385 | 0.753 | −0.494 |
TS | −0.338 | 0.804 | −0.46 |
Total | 3.489 | 2.379 | 1.723 |
% variance | 38.768 | 26.431 | 19.139 |
% accumulative variance | 38.768 | 65.199 | 84.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Peña, J.I.; Zapata-Muñoz, Y.L.; Huerfano-Moreno, G.J.; Trujillo-González, J.M.; Serrano-Gómez, M.; Castillo-Monroy, E.F.; Torres-Mora, M.A.; García-Navarro, F.J.; Jiménez-Ballesta, R. Assessing the Impacts of Land Use on Water Quality in the Acacias River Basin, Colombia. Water 2024, 16, 1903. https://doi.org/10.3390/w16131903
Rojas-Peña JI, Zapata-Muñoz YL, Huerfano-Moreno GJ, Trujillo-González JM, Serrano-Gómez M, Castillo-Monroy EF, Torres-Mora MA, García-Navarro FJ, Jiménez-Ballesta R. Assessing the Impacts of Land Use on Water Quality in the Acacias River Basin, Colombia. Water. 2024; 16(13):1903. https://doi.org/10.3390/w16131903
Chicago/Turabian StyleRojas-Peña, Jose Ismael, Yair Leandro Zapata-Muñoz, Geraldine Jhafet Huerfano-Moreno, Juan Manuel Trujillo-González, Marlon Serrano-Gómez, Edgar Fernando Castillo-Monroy, Marco Aurelio Torres-Mora, Francisco J. García-Navarro, and Raimundo Jiménez-Ballesta. 2024. "Assessing the Impacts of Land Use on Water Quality in the Acacias River Basin, Colombia" Water 16, no. 13: 1903. https://doi.org/10.3390/w16131903
APA StyleRojas-Peña, J. I., Zapata-Muñoz, Y. L., Huerfano-Moreno, G. J., Trujillo-González, J. M., Serrano-Gómez, M., Castillo-Monroy, E. F., Torres-Mora, M. A., García-Navarro, F. J., & Jiménez-Ballesta, R. (2024). Assessing the Impacts of Land Use on Water Quality in the Acacias River Basin, Colombia. Water, 16(13), 1903. https://doi.org/10.3390/w16131903