Vulnerability Assessment of Guarani Aquifer Using PESTICIDE-DRASTIC-LU Model: Insights from Brotas Municipality, Brazil
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Collection and Treatment and Parameters’ Characterization
- Depth of the water table (D): This parameter refers to the level of the water table, which is of great importance as it quantifies the thickness of soil or rock that a pesticide or pollutant has to pass through until it meets the water table [35]. Based on CPRM [48] deep well data available, we obtained this parameter by interpolating information on the position of the hydrostatic level to generate an estimate of the water depth for the entire study area.
- Net recharge (R): The net recharge refers to the amount of water that infiltrates the soil layers and reaches the aquifer [30]. This infiltrated water is the main vehicle for transporting pollutants that degrade aquifer systems [33]. The recharge values used in this work are taken from studies conducted in the Guarani aquifer, such as Rabelo [37]. We assigned the values based on the geological materials present in the area and reclassified them from the original DRASTIC methodology values.
- Aquifer media (A): Aquifer media evaluates the characteristics of the materials that constitute the aquifer, classifying their capacity to attenuate or aggravate the contamination of groundwater [49]. We obtained this information by analyzing the geological map of the state of São Paulo [46] and the deep well data [48].
- Soil media (S): Soil media refers to the superficial layer that overlies the vadose zone and presents great biological activity. The surface soil can attenuate, accelerate, or aggravate the contamination of groundwater, depending on characteristics, such as permeability, and elements that constitute sand, clay, and organic matter [50]. In general, the protection capacity of the aquifer increases the extent to which there is clay material in the soil [51]. We used the Pedological Map of the State of São Paulo [52] to analyze the soil characteristics mentioned.
- Topography (T): Topography is particularly important for assessing groundwater contamination because it directly affects aspects of runoff and infiltration, indicating the dynamics of the accumulation or dispersion of fluids along slopes. To analyze this parameter, we produced the slope chart using the ALOS-PALSAR Digital Elevation Model.
- Impact of vadose zone media (I): The impact of vadose zone media represents the influence that the constituent materials of the region between the superficial soil and the water table infer from the contamination of the underground water resources. This information comes from the deep well lithology data analysis [48].
- Hydraulic conductivity (C): According to Aller et al. [30], hydraulic conductivity is the ability of the aquifer’s constituent materials to transmit underground water, controlled by a hydraulic gradient. As a result, the higher the material’s hydraulic conductivity, the greater the aquifer’s vulnerability to contamination. Based on a review of the literature and the values suggested in CPRM [48] and Tanajura and Leite [53], the hydraulic conductivity values used in this study come from an analysis of the aquifer’s materials.
- Land use (LU): The groundwater quality of the study area has been deteriorating mainly due to the uncontrolled use of pesticides in monocultures, especially sugar cane. To assess the relationship between hydrogeological parameters and the pattern of land use, it is essential to indicate the most vulnerable areas to contamination. We derived the land use data from the MapBiomas project [54]. We adapted the assigned vulnerability values from Alam et al. [35], taking into account the Brazilian scenario.
3.2. Values Assigned to Hydrogeological Parameters
3.3. Parameters’ Index Values
3.4. Ranges of DRASTIC-LU Index
4. Results
4.1. PESTICIDE-DRASTIC-LU Parameters
4.2. Groundwater Vulnerability—PESTICIDE-DRASTIC-LU Model
4.2.1. Low Vulnerability
4.2.2. Moderate Vulnerability
4.2.3. High Vulnerability
4.2.4. Very High Vulnerability
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirata, R.; Foster, S. The Guarani Aquifer System—From Regional Reserves to Local Use. Q. J. Eng. Geol. Hydrogeol. 2020, 54, qjegh2020-091. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; De Linage, C.R.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, 2–5. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global Impacts of Conversions from Natural to Agricultural Ecosystems on Water Resources: Quantity versus Quality. Water Resour. Res. 2007, 43, 1–18. [Google Scholar] [CrossRef]
- Hirata, R.; Suhogusoff, A.V. How Much Do We Know about the Groundwater Quality and Its Impact on Brazilian Society Today? Acta Limnol. Bras. 2019, 31, 1–8. [Google Scholar] [CrossRef]
- Guerrero, J.; Gomes, A.; Mataveli, G.; Lorandi, R.; Teixeira, J.; di Lollo, J.A.; Moschini, L.E. Thirty Years of Geoethic Conflicts between Natural Groundwater Vulnerability and Land Use in a Southeastern Brazilian Municipality. Sustain. Water Resour. Manag. 2023, 9, 35. [Google Scholar] [CrossRef]
- Manzano, M.; Guimaraens, M. Hidroquímica Del Sistema Acuífero Guaraní e Implicaciones Para La Gestión. Bol. Geol. Min. 2012, 123, 281–295. [Google Scholar]
- CETESB Aquifero Guarani. Available online: https://cetesb.sp.gov.br/aguas-subterraneas/programa-de-monitoramento/consulta-por-aquiferos-monitorados/aquifero-guarani/ (accessed on 4 March 2020).
- Sindico, F.; Hirata, R.; Manganelli, A. The Guarani Aquifer System: From a Beacon of Hope to a Question Mark in the Governance of Transboundary Aquifers. J. Hydrol. Reg. Stud. 2018, 20, 49–59. [Google Scholar] [CrossRef]
- Puga, B.P.; Junior, O.A.; Hirata, R.C.A.; Bertolo, R.A. Valoração De Serviços Ecossistêmicos De Águas Subterrâneas: Notas Introdutórias. Águas Subterrâneas 2015, 353, 1–14. [Google Scholar]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing Water Ecosystem Services for Water Resource Management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Ferrari, R.S.; de Souza, A.O.; Annunciação, D.L.R.; Sodré, F.F.; Dorta, D.J. Assessing Surface Sediment Contamination by PBDE in a Recharge Point of Guarani Aquifer in Ribeirão Preto, Brazil. Water 2019, 11, 1601. [Google Scholar] [CrossRef]
- Griebler, C.; Hahn, H.J.; Mammola, S.; Niemiller, M.L.; Weaver, L.; Saccò, M.; Bichuette, M.E.; Grant, C. Hose Legal Frameworks for the Conservation and Sustainable Management of Groundwater Ecosystems. In Groundwater Ecology and Evolution; Malard, F., Griebler, C., Rétaux, S., Eds.; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Barbosa, F.D.; Alcantara, A.G.L.; Moschini, L.E.; Pugliesi, E.; Pinto, M.J.R.; Hanai, F.Y. ÁREAS DE AFLORAMENTO DO AQUÍFERO GUARANI ( SP ) E POLÍTICAS DE RECURSOS HÍDRICOS: Medidas Para Gestão. Rev. Políticas Públicas 2020, 24, 87–107. [Google Scholar] [CrossRef]
- Augustsson, A.; Uddh Söderberg, T.; Fröberg, M.; Berggren Kleja, D.B.; Åström, M.; Svensson, P.A.; Jarsjö, J. Failure of Generic Risk Assessment Model Framework to Predict Groundwater Pollution Risk at Hundreds of Metal Contaminated Sites: Implications for Research Needs. Environ. Res. 2020, 185, 109252. [Google Scholar] [CrossRef] [PubMed]
- Jesiya, N.P.; Gopinath, G. A Fuzzy Based MCDM–GIS Framework to Evaluate Groundwater Potential Index for Sustainable Groundwater Management—A Case Study in an Urban-Periurban Ensemble, Southern India. Groundw. Sustain. Dev. 2020, 11, 100466. [Google Scholar] [CrossRef]
- Achu, A.L.; Thomas, J.; Reghunath, R. Multi-Criteria Decision Analysis for Delineation of Groundwater Potential Zones in a Tropical River Basin Using Remote Sensing, GIS and Analytical Hierarchy Process (AHP). Groundw. Sustain. Dev. 2020, 10, 100365. [Google Scholar] [CrossRef]
- Hirata, R.; Fernandes, A.J. Vulnerabilidade a Poluição de Aquíferos. In Hidrogeologia: Conceitos e Aplicações; Feitosa, F.A.C., Manoel-Filho, J., Demetrio, J.G., Eds.; CPRM: Rio de Janeiro, Brazil, 2008; p. 812. [Google Scholar]
- Gharaibeh, A.A.; Ghrair, A.M.; Merkel, B. Groundwater Risk Assessment Investigations for Oil Shale Exploitation in El-Lajjun Area of Central Jordan. Arab. J. Geosci. 2019, 12, 495. [Google Scholar] [CrossRef]
- Kumar, A.; Datta, M.; Gurjar, B.R.; Nema, A.K.; Singh, R.K. Response of Groundwater Contamination Hazard Rating Systems to Variations in Subsoil Conditions beneath Municipal Solid Waste (MSW) Dumps in Developing Countries. Arab. J. Geosci. 2019, 12, 405. [Google Scholar] [CrossRef]
- Mfonka, Z.; Ndam Ngoupayou, J.R.; Ndjigui, P.D.; Kpoumie, A.; Zammouri, M.; Ngouh, A.N.; Mouncherou, O.F.; Rakotondrabe, F.; Rasolomanana, E.H. A GIS-Based DRASTIC and GOD Models for Assessing Alterites Aquifer of Three Experimental Watersheds in Foumban (Western-Cameroon). Groundw. Sustain. Dev. 2018, 7, 250–264. [Google Scholar] [CrossRef]
- Parizi, E.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Vulnerability Mapping of Coastal Aquifers to Seawater Intrusion: Review, Development and Application. J. Hydrol. 2019, 570, 555–573. [Google Scholar] [CrossRef]
- Pedretti, D.; Luoma, S.; Ruskeeniemi, T.; Backman, B. A Geologically-Based Approach to Map Arsenic Risk in Crystalline Aquifers: Analysis of the Tampere Region, Finland. Geosci. Front. 2019, 10, 1731–1741. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Espinha Marques, J.; Carvalho, J.M.; Pereira, A.J.S.C.; Carvalho, M.R.; Fonseca, P.E.; Pérez-Alberti, A.; Rocha, F. A Comprehensive Analysis of Groundwater Resources Using GIS and Multicriteria Tools (Caldas Da Cavaca, Central Portugal): Environmental Issues. Environ. Earth Sci. 2015, 73, 2699–2715. [Google Scholar] [CrossRef]
- Bouchet, L.; Thoms, M.C.; Parsons, M. Groundwater as a Social-Ecological System: A Framework for Managing Groundwater in Pacific Small Island Developing States. Groundw. Sustain. Dev. 2019, 8, 579–589. [Google Scholar] [CrossRef]
- Hérivaux, C.; Grémont, M. Valuing a Diversity of Ecosystem Services: The Way Forward to Protect Strategic Groundwater Resources for the Future? Ecosyst. Serv. 2019, 35, 184–193. [Google Scholar] [CrossRef]
- UN-Water. UN-Water Annual Report; UN-Water: Genebra, Switzerland, 2019; Volume 1. [Google Scholar]
- Pedrini, N.D.A.; Machado, I.F. AMEAÇA DE CONTAMINAÇÃO DO AQUÍFERO GUARANI E DAS GENTES POR AGROTÓXICOS E PESTICIDAS. In Proceedings of the Anais XI Semana Academica de Relações Internacionais, Dourados, Brazil, 24 July 2021; pp. 1–7. [Google Scholar]
- Soares, R.B.; Silva, S.M.O.; de Souza, F.D.A.; Studart, T.M.d.C.; Frota, R.L. Groundwater Vulnerability to Agrochemical Contamination. Rev. Bras. Ciências Ambient. 2020, 55, 440–455. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; USEPA Report 600/2-87/035; Robert S. Kerr Environmental Research Laboratory: Ada, OK. USA, 1987; 252p.
- Freitas, L.; Chaminé, H.I.; Pereira, A.J.S.C. Coupling Groundwater GIS Mapping and Geovisualisation Techniques in Urban Hydrogeomorphology: Focus on Methodology. SN Appl. Sci. 2019, 1, 490. [Google Scholar] [CrossRef]
- Hamamin, D.F.; Nadiri, A.A. Supervised Committee Fuzzy Logic Model to Assess Groundwater Intrinsic Vulnerability in Multiple Aquifer Systems. Arab. J. Geosci. 2018, 11, 176. [Google Scholar] [CrossRef]
- Hasan, M.; Islam, M.A.; Aziz Hasan, M.; Alam, M.J.; Peas, M.H. Groundwater Vulnerability Assessment in Savar Upazila of Dhaka District, Bangladesh—A GIS-Based DRASTIC Modeling. Groundw. Sustain. Dev. 2019, 9, 100220. [Google Scholar] [CrossRef]
- Kadkhodaie, F.; Asghari Moghaddam, A.; Barzegar, R.; Gharekhani, M.; Kadkhodaie, A. Optimizing the DRASTIC Vulnerability Approach to Overcome the Subjectivity: A Case Study from Shabestar Plain, Iran. Arab. J. Geosci. 2019, 12, 527. [Google Scholar] [CrossRef]
- Alam, F.; Umar, R.; Ahmed, S.; Dar, F.A. A New Model (DRASTIC-LU) for Evaluating Groundwater Vulnerability in Parts of Central Ganga Plain, India. Arab. J. Geosci. 2014, 7, 927–937. [Google Scholar] [CrossRef]
- MMA Aquífero Guarani. Available online: https://www.mma.gov.br/informma/item/8617-aquifero-guarani (accessed on 5 August 2020).
- Rabelo, J.L. Estudo Da Recarga Do Aquífero Guarani No Sistema Jacaré-Tietê; Universidade de São Paulo: São Paulo, Brazil, 2006. [Google Scholar]
- Mezzalira, S. LEXICO ESTRATIGRÃFICO DO ESTADO DE SAO PAULO; Geological Institute: São Paulo, Brazil, 1981. [Google Scholar]
- Guerrero, J.V.R.; Gomes, A.; De Lollo, J.A.; Lorandi, R.; Moschini, L.E. Geoecological Mapping to Identify Groundwater Ecosystem Services Conflicts in a Brazilian Municipality. In Proceedings of the Book of Abstracts of the Geoethics & Groundwater Management Congress; Grupo Português da Associação Internacional de Hidrogeólogos: Porto, Portugal, 2020. [Google Scholar]
- Periotto, N.; Tundisi, J. Ecosystem Services of UHE Carlos Botelho (Lobo/Broa): A New Approach for Management and Planning of Dams Multiple-Uses. Brazilian J. Biol. 2013, 73, 471–482. [Google Scholar] [CrossRef]
- de Salis, S.M. COMPOSIÇXO FLORÍSTICA E ESTRUTURA DE UM REMANESCENTE DE MATA CILIAR DO RIO JACARÉ-PEPIRA; Universidade Estadual de Campinas: Brotas, SP, Brazil, 1990. [Google Scholar]
- CEMADEN Pluviometros Automáticos. Available online: http://www2.cemaden.gov.br/pluviometros-automatico/ (accessed on 12 November 2020).
- Ross, J.L.S. Landforms and Environmental Planning. Revista Do Departamento De Geografia 2012, 1, 38–51. [Google Scholar] [CrossRef]
- Ross, J.L.S.; Gouveia, I.C.M. MAPA GEOMORFOLÓGICO DO ESTADO DE SÃO PAULO. Rev. Dep. Geogr. 2011, 10, 41–58. [Google Scholar] [CrossRef]
- de Moraes, C.C.M.; Santana, M.S.; Simões, P.M.L.; da Conceição, R.A.C.; da Silva, S.F. Carta de Suscetibilidade a Movimentos Gravitacionais de Massa e Inundação: Município de Brotas, SP; CPRM: Brasília, Brazil, 2020. [Google Scholar]
- IG/SMA. UNIDADES BÁSICAS DE COMPARTIMENTAÇÃO DO MEIO FÍSICO (UBC); Geological Institute: São Paulo, Brazil, 2014. [Google Scholar]
- Fannakh, A.; Farsang, A. DRASTIC, GOD, and SI Approaches for Assessing Groundwater Vulnerability to Pollution: A Review. Environ. Sci. Eur. 2022, 34, 77. [Google Scholar] [CrossRef]
- CPRM Sistema de Informações de Águas Subterrâneas SIAGAS. Available online: http://siagasweb.cprm.gov.br/layout/ (accessed on 22 May 2019).
- Neshat, A.; Pradhan, B. Evaluation of Groundwater Vulnerability to Pollution Using DRASTIC Framework and GIS. Arab. J. Geosci. 2017, 10, 501. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Cai, C.; Wang, S. Mechanism of Nitrogen Loss Driven by Soil and Water Erosion in Water Source Areas. J. For. Res. 2023, 34, 1985–1995. [Google Scholar] [CrossRef]
- Knouz, N.; Boudhar, A.; Bachaoui, E.M.; Saadi, C. Comparative Approach of Three Popular Intrinsic Vulnerability Methods: Case of the Beni Amir Groundwater (Morocco). Arab. J. Geosci. 2018, 11, 281. [Google Scholar] [CrossRef]
- IAC. Levantamento Pedológico Semi-Detalhado Do Estado de São Paulo—Quadrícula de Brotas. SF.22-Z-B-III-4; Instituto Agronômico de Campinas: Campinas, Brazil, 1981.
- Tanajura, D.d.S.; Leite, C.B.B. QUANTIFICAÇÃO DA VULNERABILIDADE NATURAL À CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS DA SUB-BACIA HIDROGRÁFICA JACARÉ-PEPIRA/SP. Águas Subterrâneas 2016, 30, 306–325. [Google Scholar] [CrossRef]
- MapBiomas Coleção 4 Da Série Anual de Mapas de Cobertura e Uso de Solo Do Brasil. Available online: https://mapbiomas.org/ (accessed on 22 January 2020).
- Gonçalves, V.; Albuquerque, A.; Carvalho, P.; Almeida, P.; Cavaleiro, V. Groundwater Vulnerability Assessment to Cemeteries Pollution through GIS-Based DRASTIC Index. Water 2023, 15, 812. [Google Scholar] [CrossRef]
- Hu, J.; Yang, P.; Li, Q.; Wang, M.; Feng, J.; Gao, Z.; Liu, J. Evaluation of Groundwater Vulnerability of Yishu River Basin Based on DRASTIC-GIS Model. Water 2024, 16, 429. [Google Scholar] [CrossRef]
- Santos, R.G. Geoprocessamento Aplicado a Análise Do Índice De Vulnerabilidade Drastic No Sistema Aquífero Guarani Em Ribeirão Bonito—Sp. Rev. Bras. Cartogr. 2016, 68, 391–406. [Google Scholar] [CrossRef]
- Saha, D.; Alam, F. Groundwater Vulnerability Assessment Using DRASTIC and Pesticide DRASTIC Models in Intense Agriculture Area of the Gangetic Plains, India. Environ. Monit. Assess. 2014, 186, 8741–8763. [Google Scholar] [CrossRef]
- Santarosa, L.V.; Gastmans, D.; Sitolini, T.P.; Kirchheim, R.E.; Betancur, S.B.; de Oliveira, M.E.D.; Campos, J.C.V.; Manzione, R.L. Assessment of Groundwater Recharge along the Guarani Aquifer System Outcrop Zone in São Paulo State (Brazil): An Important Tool towards Integrated Management. Environ. Earth Sci. 2021, 80, 95–108. [Google Scholar] [CrossRef]
- Manzione, R.L.; Silva, C.d.O.F.; Paes, C.O. Groundwater Recharge Favorability Modelling by Diffuse Logic Paradigm. Aguas Subterraneas 2021, 35, 1–9. [Google Scholar] [CrossRef]
- Guerrero, J.V.R.; Moschini, L.E.; Dantas Chaves, M.E.; Mataveli, G.A.V.; Morato, R.G.; Kawakubo, F.S. ABORDAGEM GEOBIA PARA A ANÁLISE DA DIN MICA DO USO DA TERRA E COBERTURA VEGETAL NO MUNICÍPIO DE BROTAS-SP, BRASIL. GeoFocus Rev. Int. Cienc. Tecnol. Inf. Geográfica 2020, 26, 21–41. [Google Scholar] [CrossRef]
- Trevisan, D.P.; Moschini, L.E.; Guerrero, J.V.R. Dinâmica Temporal Do Uso e Cobertura Da Terra No Município de Brotas-SP Entre Os Anos de 1988 e 2016. Fronteiras 2017, 6, 204–219. [Google Scholar] [CrossRef]
- RepórterBrasil Por Trás Do Alimento: Você Bebe Agrotóxicos? Available online: https://portrasdoalimento.info/agrotoxico-na-agua/ (accessed on 20 December 2021).
- IBGE IBGE Cidades—Brotas, SP. Available online: https://cidades.ibge.gov.br/brasil/sp/brotas/panorama (accessed on 22 May 2018).
- Valadares, A.; Alves, F.; Galiza, M. O Crescimento Do Uso de Agrotóxicos: Uma Análise Descritiva Dos Resultados Do Censo Agropecuário 2017; 2020. Technical note from the Institute for Applied Economic Research. Available online: https://portalantigo.ipea.gov.br/portal/images/stories/PDFs/nota_tecnica/200429_nt_disoc_n65.pdf/ (accessed on 15 March 2023).
- Peixoto, C.A.B. Geodiversidade Do Estado de São Paulo, 1st ed.; CPRM: São Paulo, Brazil, 2010. [Google Scholar]
- DeLonge, M.; Robbins, T.; Basche, A.; Haynes-Mawlow, L. The State of Sustainable Agriculture and Agroecology Research and Impacts: A Survey of U.S. Scientists. J. Agric. Food Syst. Community Dev. 2020, 9, 159–184. [Google Scholar] [CrossRef]
- Mafra, N.M.C. Erosion and Land Use Planification. In Soil Erosion and Conservation; Guerra, A.J.T., da Silva, A.S., Botelho, R.G.M., Eds.; Bertrand Brasil: Rio De Janeiro, Brazil, 2012; p. 340. [Google Scholar]
- Garg, K.K.; Anantha, K.H.; Nune, R.; Akuraju, V.R.; Singh, P.; Krishna, G.M.; Dixit, S.; Ragab, R. Impact of Land Use Changes and Management Practices on Groundwater Resources in Kolar District, Southern India. J. Hydrol. Reg. Stud. 2020, 31, 100732. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing Future Crops: Challenges and Strategies for Sustainable Agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pengb, M.; Lib, T.; Wenc, D.; Huang, X.; Yanga, J. Monitoring Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Multi-Temporal Deep LearningMonitoring Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Multi-Temporal Deep LearningMonitoring Ecosystem. Sci. Total Environ. 2022, 822, 153662. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Bian, J.; Wang, Y. Impacts of Urban Land Use on the Spatial Distribution of Groundwater Pollution, Harbin City, Northeast China. J. Contam. Hydrol. 2018, 215, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Yar, P. Urban Development and Its Impact on the Depletion of Groundwater Aquifers in Mardan City, Pakistan. Groundw. Sustain. Dev. 2020, 11, 100426. [Google Scholar] [CrossRef]
- Ab’saber, A. Os Domínios de Natureza No Brasil; Ateliê Editorial: São Paulo, Brazil, 2012. [Google Scholar]
- Guerrero, J.V.R.; De Lollo, J.A.; Lorandi, R. CARTOGRAFIA GEOAMBIENTAL COMO BASE PARA PLANEJAMENTO TERRITORIAL NA BACIA DO RIO CLARINHO, SP. Rev. Bras. Cartogr. 2016, 68, 313–326. [Google Scholar] [CrossRef]
- Guerrero, J.V.R.; Gomes, A.A.T.; de Lollo, J.A.; Moschini, L.E. Mapping Potential Zones for Ecotourism Ecosystem Services as a Tool to Promote Landscape Resilience and Development in a Brazilian Municipality. Sustainability 2020, 12, 10345. [Google Scholar] [CrossRef]
- MMA Zoneamento Ambiental Municipal. Available online: https://www.mma.gov.br/cidades-sustentaveis/planejamento-ambiental-e-territorial-urbano/itemlist/category/62-planejamento-ambiental-urbano.html (accessed on 20 August 2020).
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.S.; Grasso, M.; Wratten, S.; Sandhu, H.; et al. Changes in the Global Value of Ecosystem Services. Ecol. Econ. 2018, 86, 206–219. [Google Scholar] [CrossRef]
Rock Unit | Description | (%) |
---|---|---|
Botucatu Formation | Formed predominantly by fine- to coarse-grained sandstones, with rounded clasts and with great sphericity and reddish and matte coloration. Refers to past sub-environments of a climate desert of increasing aridity. | 42 |
Pirambóia Formation | It consists of eolian sediments and a fluvial-eolian formation deposited in areas of a desert environment, corresponding to the evolution of a wind dunes field. Characterized by thick reddish, yellowish, and whitish sandstones, with fine to medium sand size. | 25 |
Serra Geral Formation | Set of basaltic spills, including sandstones of the Botucatu Formation, forming the so-called Serra Geral Basin. | 6 |
Itaqueri Formation | Sandstones and conglomerates that present silicification and stratification essentially form it. It comprises rudaceous deposits from alluvial fans located geographically in the Itaqueri, Cuscuzeiro, São Carlos, and São Pedro mountains, thus comprising the southern region of the municipality of Brotas. | 14 |
Alluvial deposits | Alluvial deposits are derived from the weathering of the bedrock and thus are formed primarily by transported and deposited sandy sediments. Located along plains and allocated in the valley bottoms and surrounding areas. | 11 |
Eluvial deposits | Eluvial deposits are considered chaotic and poorly selected sediments ranging from blocks and fragments to clays. Such deposits are the result of the mechanical breakdown of rocks and slopes. The transport and deposition of this eroded material occur by the action of gravity or flow current. | 2 |
Value | Hydrogeological Parameters | |||||||
---|---|---|---|---|---|---|---|---|
D | R | A | S | T | I | C | LU | |
1 | >30.5 | Itaqueri | -- | Red Nitisols Loamy Ultisols | >18 | Confining Layer | <4.1 | Natural formations, Water |
2 | 22.9–30.5 | -- | Serra Geral | Red Oxisols; | -- | -- | Pasture | |
3 | 15.22–22.9 | -- | -- | -- | 12–18 | -- Basalt | -- | -- |
4 | -- | -- | Itaqueri | Sandy Ultisols | -- | -- | -- | -- |
5 | 9.1–15.2 | -- | -- | -- | 6–12 | -- | -- | -- |
6 | -- | -- | -- | -- | -- | -- | -- | Forestry |
7 | 4.6–9.1 | -- | -- | Red-Yellow Oxisols | -- | -- | -- | Annual Crops |
8 | -- | Serra Geral | -- | Lithic Entisols | -- | -- | -- | Sugar Cane |
9 | 1.5–4.6 | Pirambóia Botucatu Alluvium Colluvium | Alluvium Colluvium | Quartzipsamments Entisols Alfisols | 2–6 | Sand (1) | -- | Urban |
10 | <1.5 | -- | Botucatu Pirambóia | -- | <2 | Sand (2) | -- | Bare Soil |
Parameters’ Index Values | ||||||||
---|---|---|---|---|---|---|---|---|
D | R | A | S | T | I | C | LU | |
PESTICIDE DRASTIC-LU | 5 | 4 | 3 | 5 | 3 | 4 | 2 | 5 |
PDRASTIC-LU Index | PDRASTIC-LU Value | Color in the Map |
---|---|---|
Low | <120 | Green |
Moderate | 120–160 | Yellow |
High | 160–200 | Orange |
Very High | >200 | Red |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, J.V.; Gomes, A.; Lorandi, R.; Di Lollo, J.A.; Mataveli, G.; Moschini, L.E. Vulnerability Assessment of Guarani Aquifer Using PESTICIDE-DRASTIC-LU Model: Insights from Brotas Municipality, Brazil. Water 2024, 16, 1748. https://doi.org/10.3390/w16121748
Guerrero JV, Gomes A, Lorandi R, Di Lollo JA, Mataveli G, Moschini LE. Vulnerability Assessment of Guarani Aquifer Using PESTICIDE-DRASTIC-LU Model: Insights from Brotas Municipality, Brazil. Water. 2024; 16(12):1748. https://doi.org/10.3390/w16121748
Chicago/Turabian StyleGuerrero, João Vitor, Alberto Gomes, Reinaldo Lorandi, José Augusto Di Lollo, Guilherme Mataveli, and Luiz Eduardo Moschini. 2024. "Vulnerability Assessment of Guarani Aquifer Using PESTICIDE-DRASTIC-LU Model: Insights from Brotas Municipality, Brazil" Water 16, no. 12: 1748. https://doi.org/10.3390/w16121748
APA StyleGuerrero, J. V., Gomes, A., Lorandi, R., Di Lollo, J. A., Mataveli, G., & Moschini, L. E. (2024). Vulnerability Assessment of Guarani Aquifer Using PESTICIDE-DRASTIC-LU Model: Insights from Brotas Municipality, Brazil. Water, 16(12), 1748. https://doi.org/10.3390/w16121748