Performance of Treating Surfactant-Containing Wastewater by Using Algal–Bacterial Granular Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sludge and Reactor Set-Up
2.2. Experimental Design
2.3. Analytical Methods
2.4. EPS Extraction and Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphology and Biomass Growth
3.2. Carbon Removal
3.3. The Removal of N
3.4. The Removal of P
3.5. The Change in the Specific Oxygen Uptake Rate
3.6. Sodium Dodecyl Sulfate
3.7. Analysis of Extracellular Polymeric Substances
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayes, D.G.; Smith, G.A.J.B.S. Biobased surfactants: Overview and industrial state of the art. Biobased Surfactants 2019, 3–38. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Low, A.; Rabat, N.E. A review on recent developments in the adsorption of surfactants from wastewater. J. Environ. Manag. 2020, 254, 109797. [Google Scholar] [CrossRef] [PubMed]
- Moldes, A.B.; Rodriguez-Lopez, L.; Rincon-Fontan, M.; Lopez-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Yang, Z.; Li, J. Effects and associated mechanisms of surfactants on wastewater treatment in the context of COVID-19. Chin. J. Chem. Eng. 2021, 15, 1831–1839. [Google Scholar]
- Pradhan, A.; Bhattacharyya, A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. J. Clean. Prod. 2017, 150, 127–134. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, X.; Zeng, G.; Liu, Z.; Tang, L.; Shao, B.; Zeng, Z.; Zhang, W.; Liu, Y.; Cheng, M.; et al. Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application. Chem. Eng. J. 2019, 372, 429–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T. Culturing the uncultured microbial majority in activated sludge: A critical review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 601–624. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Q.; Wei, W.; Sun, J.; Dai, X.; Ni, B. Improving the treatment of waste activated sludge using calcium peroxide. Water Res. 2020, 187, 116440. [Google Scholar] [CrossRef]
- Sharmila, V.G.; Kumar, G.; Sivashanmugham, P.; Piechota, G.; Park, J.H.; Kumar, S.A.; Banu, J.R. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. Bioresour. Technol. 2022, 363, 127985. [Google Scholar]
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. Foamability of sodium dodecyl sulfate solutions: Anomalous effect of dodecanol unexplained by conventional theories. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 110–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, X.; Liu, S.; Lei, Z.; Shimizu, K.; Zhang, Z.; Adachi, Y.; Lee, D.-J. Rapid establishment and stable performance of a new algal-bacterial granule system from conventional bacterial aerobic granular sludge and preliminary analysis of mechanisms involved. J. Water Process. Eng. 2020, 34, 101073. [Google Scholar] [CrossRef]
- Ahmad, J.S.M.; Cai, W.; Zhao, Z.; Zhang, Z.; Shimizu, K.; Lei, Z.; Lee, D.-J. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresour. Technol. 2017, 244, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lei, Z.; Wei, Y.; Wang, Q.; Tian, C.; Shimizu, K.; Zhang, Z.; Adachi, Y.; Lee, D.-J. Behavior of algal-bacterial granular sludge in a novel closed photo-sequencing batch reactor under no external O-2 supply. Bioresour. Technol. 2020, 318, 124190. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, B.; Liu, Y.; Feng, X.; Shi, W. Revealing the influencing mechanisms of polystyrene microplastics (MPs) on the performance and stability of the algal-bacterial granular sludge. Bioresour. Technol. 2022, 354, 127202. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, W.; Cao, Z.; Ji, Y.; Liu, D.; Huang, W.; Zhu, Y.; Lei, Z. Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system. J. Hazard. Mater. 2022, 438, 129286. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, Z.; Yang, X.; Lei, Z.; Shimizu, K.; Zhang, Z.; Lee, D.-J. Response and recovery of mature algal-bacterial aerobic granular sludge to sudden salinity disturbance in influent wastewater: Granule characteristics and nutrients removal/accumulation. Bioresour. Technol. 2021, 321, 124492. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, T.; Ding, Y.; Wang, Z.; Zhang, Z.; Lei, Z.; Shimizu, K.; Yuan, T. Enhanced performance of algal-bacterial aerobic granular sludge in comparison to bacterial aerobic granular sludge for treating surfactant-containing wastewater. Bioresour. Technol. Rep. 2023, 22, 101462. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; National Government Publication: Washington, DC, USA, 2007. [Google Scholar]
- Capodici, M.; Corsino, S.F.; Torregrossa, M.; Viviani, G. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater. J. Environ. Manag. 2018, 208, 142–148. [Google Scholar] [CrossRef]
- Kwon, G.; Kim, H.; Song, C.; Jahng, D. Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochem. Eng. J. 2019, 152, 107385. [Google Scholar] [CrossRef]
- Ji, B.; Shi, Y.; Yilmaz, M. Microalgal-bacterial granular sludge process for sustainable municipal wastewater treatment: Simple organics versus complex organics. J. Water Process. Eng. 2022, 46, 102613. [Google Scholar] [CrossRef]
- Wang, L.; Huang, B.; Wang, L.; Min, Y.; Yu, H. Experimental and theoretical analyses on the impacts of ionic surfactants on sludge properties. Sci. Total Environ. 2018, 633, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; Wang, J. New insights into the effect of surfactants on oxygen mass transfer in activated sludge process. J. Environ. Chem. Eng. 2020, 8, 104409. [Google Scholar] [CrossRef]
- Wang, S.; Ji, B.; Zhang, M.; Gu, J.; Ma, Y.; Liu, Y. Tetracycline-induced decoupling of symbiosis in microalgal-bacterial granular sludge. Environ. Res. 2021, 197, 111095. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, R.C.; Feijao, E.; Matos, A.R.; Cabrita, M.T.; Utkin, A.B.; Novais, S.C.; Lemos, M.F.L.; Caçador, I.; Marques, J.C.; Reis-Santos, P.; et al. Ecotoxicological effects of the anionic surfactant Sodium Dodecyl Sulfate (SDS) in two marine primary producers: Phaeodactylum tricornutum and ulva lactuca. Toxics 2022, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Agbebi, T.V.; Ojo, E.O.; Watson, I.A. Towards optimal inorganic carbon delivery to microalgae culture. Algal Res.-Biomass Biofuels Bioprod. 2022, 67, 102841. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, S.; Yang, X.; Lei, Z.; Shimizu, K.; Zhang, Z.; Lee, D.-J.; Adachi, Y. Stability and performance of algal-bacterial granular sludge in shaking photo-sequencing batch reactors with special focus on phosphorus accumulation. Bioresour. Technol. 2019, 280, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, F.; Fang, Z.; Gu, Y.; Wang, H.; Lu, J.; Bi, Y.; Wang, S.; Huang, W.; Meng, F. Effect of filamentous algae in a microalgal-bacterial granular sludge system treating saline wastewater: Assessing stability, lipid production and nutrients removal. Bioresour. Technol. 2022, 354, 127182. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, W.; Zhang, C.; Feng, S.; Zhang, Z.; Lei, Z.; Sugiura, N. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater. Bioresour. Technol. 2015, 187, 214–220. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, S.; Jin, Y.; Wu, Z.; Liu, D.; Su, H. Insights into nitrogen and phosphorus metabolic mechanisms of algal-bacterial aerobic granular sludge via metagenomics: Performance, microbial community and functional genes. Bioresour. Technol. 2023, 369, 128442. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Liu, J.; Chen, X.; Lei, Z.; Yuan, T.; Shimizu, K.; Zhang, Z.; Lee, D.-J.; Lin, Y.J.W.R. Highly efficient carbon assimilation and nitrogen/phosphorus removal facilitated by photosynthetic O2 from algal-bacterial aerobic granular sludge under controlled DO/pH operation. Water Res 2023, 238, 120025. [Google Scholar] [CrossRef]
- Cai, W.; Hu, P.; Li, Z.; Kang, Q.; Chen, H.; Zhang, J.; Zhu, S. Effect of high ammonia on granular stability and phosphorus recovery of algal-bacterial granules in treatment of synthetic biogas slurry. Heliyon 2022, 8, e09844. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, H.; Chen, L.; Gao, S.; Zhang, W.; Song, J.; Yu, J. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Hazard. Mater. 2020, 390, 121782. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, W.; Wei, D.; Ngo, H.H.; Guo, W.; Qiao, Y.; Xu, W.; Du, B.; Wei, Q. System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress. Bioresour. Technol. 2018, 270, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Liu, B.; Liu, Y.; Yan, T.; Wei, D. Light-introduced partial nitrification in an algal-bacterial granular sludge bioreactor: Performance evolution and microbial community shift. Bioresour. Technol. 2022, 354, 127226. [Google Scholar] [CrossRef]
- Hou, H.; Wang, S.; Ji, B.; Zhang, Y.; Pi, K.; Shi, Y. Adaptation responses of microalgal-bacterial granular sludge to polystyrene microplastic particles in municipal wastewater. Environ. Sci. Pollut. Res. 2022, 29, 59965–59973. [Google Scholar] [CrossRef]
Sludge Type | MLSS (g/L) | MLVSS/MLSS (%) | SVI5 (mL/g) | Average Diameter (mm) |
---|---|---|---|---|
Algal–bacterial AGS | 5.24 ± 0.89 | 80.6 ± 1.3 | 51.7 ± 2.9 | 2.07 ± 0.32 |
Bacterial AGS | 4.56 ± 0.51 | 78.3 ± 2.4 | 50.5 ± 3.3 | 1.91 ± 0.22 |
Parameters | |
---|---|
Cycle (6 h) | 8 min feeding |
90 min non-aeration | |
250 min aeration | |
4 min settling | |
8 min effluent withdrawal | |
Exchange ratio | 50% |
Amount of synthetic wastewater | 1 L/day/reactor |
HRT | 12 h |
SRT | 24 days |
Aeration | 0.43 L/min |
Illumination intensity | 3760 lux (12 h/day) |
Period | Size (mm) | SVI5 (mL/g) | ||
---|---|---|---|---|
Bacterial AGS | Algal–Bacterial AGS | Bacterial AGS | Algal–Bacterial AGS | |
Stage I | 1.87 ± 0.27 | 2.23 ± 0.38 | 51.5 ± 2.3 | 52.7 ± 4.9 |
Stage II | 1.92 ± 0.19 | 2.57 ± 0.32 | 53.6 ± 4.8 | 55.9 ± 2.3 |
Stage III | 2.41 ± 0.41 | 3.39 ± 0.58 | 57.9 ± 6.2 | 65.1 ± 5.7 * |
Stage IV | 2.13 ± 0.44 | 2.96 ± 0.27 | 54.1 ± 2.4 | 59.7 ± 2.7 |
Operation Stage | Chl-a (mg/g-VSS) |
---|---|
Stage I | 6.48 ± 1.23 |
Stage II | 6.52 ± 0.73 |
Stage III | 4.53 ± 1.12 * |
Stage IV | 5.97 ± 1.64 |
SOUR (mgO2/(gMLVSS·h)) | Algal–Bacterial AGS | Bacterial AGS |
---|---|---|
Initial | 33.6 ± 1.56 | 28.43 ± 1.28 |
Stage I | 34.3 ± 2.38 | 26.43 ± 3.2 |
Stage II | 31.6 ± 1.28 | 24.39 ± 2.23 |
Stage III | 28.5 ± 2.17 * | 23.94 ± 1.28 |
Stage IV | 32.7 ± 1.15 * | 25.76 ± 2.15 |
Removal Efficiency | Algal–Bacterial AGS | Bacterial AGS |
---|---|---|
No surfactant | 93.6 ± 2.5% | 93.2 ± 1.8% |
Stage II | 94.3 ± 2.3% | 96.3 ± 3.2% |
Stage III | 91.6 ± 6.2% * | 81.9 ± 4.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, T.; Hang, X. Performance of Treating Surfactant-Containing Wastewater by Using Algal–Bacterial Granular Sludge. Water 2024, 16, 1717. https://doi.org/10.3390/w16121717
Wang H, Liu T, Hang X. Performance of Treating Surfactant-Containing Wastewater by Using Algal–Bacterial Granular Sludge. Water. 2024; 16(12):1717. https://doi.org/10.3390/w16121717
Chicago/Turabian StyleWang, Hanxiao, Tongtong Liu, and Xiaoshuai Hang. 2024. "Performance of Treating Surfactant-Containing Wastewater by Using Algal–Bacterial Granular Sludge" Water 16, no. 12: 1717. https://doi.org/10.3390/w16121717
APA StyleWang, H., Liu, T., & Hang, X. (2024). Performance of Treating Surfactant-Containing Wastewater by Using Algal–Bacterial Granular Sludge. Water, 16(12), 1717. https://doi.org/10.3390/w16121717