Predictability of Hurricane Storm Surge: An Ensemble Forecasting Approach Using Global Atmospheric Model Data
Abstract
:1. Introduction
- Develop and test a method for parameterizing tropical cyclones from atmospheric model simulations for use in storm surge simulation, prediction, and research.
- Use the method, in conjunction with numerical weather prediction ensemble data and a dynamical storm surge model, to generate ensemble TC–storm surge predictions for Hurricane Michael.
- Analyze the resulting ensemble data to:
- investigate the predictability of storm surge inundation across a range of forecast lead times, from approximately 1–3 days, and
- explore the importance of different TC parameters for predicting storm surge inundation at different lead times.
2. Materials and Methods
2.1. ECMWF-Derived Parameterized TC Ensemble Forecasts
2.1.1. Parameterizing ECMWF Ensemble Members
2.1.2. Adjusting TC Intensity
2.1.3. Estimating Missing Wind Radii
2.2. Storm Surge and Coastal Inundation Simulations
2.2.1. Best Track Simulation and Best Track Experiments
- BT_removeR64: R64 (64 kt wind radii) values removed in all 4 quadrants
- BT_removeR64R50: R64 and R50 (64 kt and 50 kt wind radii) values removed in all 4 quadrants
- BT_replaceR64: R64 removed in all 4 quadrants, then estimated as described in Section 2.1.3
- BT_replaceR64R50: R64 and R50 removed in all 4 quadrants, then estimated as described in Section 2.1.3
2.2.2. TC–Storm Surge Ensemble Forecasts
2.3. Data Analysis
3. Results: Best Track Simulations
3.1. Best Track Simulation and Comparison with Observations
3.2. Sensitivity of Best Track Simulation to Missing and Estimated Wind Radii
4. Results: TC–Storm Surge Ensemble Forecasts
4.1. Intensity-Adjusted TC Ensemble Forecasts at Multiple Lead Times
4.2. Prediction and Predictability of TC Storm Surge at Multiple Lead Times
4.3. Sensitivity of Coastal Inundation to TC Parameters
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Adjusting Ensemble Vmax
Appendix B. Estimating Pmin
Appendix C. Estimating Missing Wind Radii
- If Vmax ≥ 34 and R34 was missing for a quadrant, we set that R34 to that quadrant’s R34 at the previous forecast time. If no previous R34 was available (i.e., if this was the initial time), we set that R34 to the smallest value of R34 in the other quadrants at that time.
- If Vmax ≥ 50 and R50 was missing for a quadrant, we estimated that R50 by multiplying that quadrant’s R34 by its R50:R34 ratio for that initialization time and rounding to the nearest whole number. If the resulting estimated R50 was less than R50min, we left that R50 missing; if it was greater than R50max, we set it to R50max.
- If Vmax ≥ 64 and R64 was missing for a quadrant, we estimated that R64 by multiplying that quadrant’s R50 by its R64:R50 ratio for that initialization time and rounding to the nearest whole number. If the resulting estimated R64 was less than R64min, we left that R64 missing; if it was greater than R64max, we set it to R64max.
References
- Rappaport, E.N. Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Bouwer, L.M.; Jonkman, S.N. Global mortality from storm surges is decreasing. Environ. Res. Lett. 2018, 13, 014008:1–014008:7. [Google Scholar] [CrossRef]
- Forbes, C.; Rhome, J.; Mattocks, C.; Taylor, A. Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model. J. Mar. Sci. Eng. 2014, 2, 437–476. [Google Scholar] [CrossRef]
- Morrow, B.H.; Lazo, J.K.; Rhome, J.; Feyen, J. Improving storm surge risk communication: Stakeholder perspectives. Bull. Am. Meteorol. Soc. 2015, 96, 35–48. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Asher, T.G.; Miller, P.W.; Fleming, J.G.; Hagen, S.C.; Luettich, R.A., Jr. Real-time simulated storm surge predictions during Hurricane Michael (2018). Weather Forecast. 2022, 37, 1085–1102. [Google Scholar] [CrossRef]
- Penny, A.B.; Alaka, L.; Taylor, A.A.; Booth, W.; DeMaria, M.; Fritz, C.; Rhome, J. Operational storm surge forecasting at the National Hurricane Center: The Case for probabilistic guidance and the evaluation of improved storm size forecasts used to define the wind forcing. Weather Forecast. 2023, 38, 2461–2479. [Google Scholar] [CrossRef]
- Lee, J.-W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024:1–1104024:17. [Google Scholar] [CrossRef]
- Bao, D.; Xue, Z.G.; Warner, J.C.; Moulton, M.; Yin, D.; Hegermiller, C.A.; Zambon, J.B.; He, R. A numerical investigation of Hurricane Florence-induced compound flooding in the Cape Fear Estuary using a dynamically coupled hydrological-ocean model. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003131:1–e2022MS003131:24. [Google Scholar] [CrossRef]
- Ayyad, M.; Orton, P.M.; El Safty, H.; Chen, Z.; Hajj, M.R. Ensemble forecast for storm tide and resurgence from Tropical Cyclone Isaias. Weather Clim. Extr. 2022, 38, 100504:1–100504:10. [Google Scholar] [CrossRef]
- Losego, J.L.; Galluppi, K.J.; Montz, B.E.; Smith, C.F.; Schotz, S. Weather for emergency management: Implications for NWS tropical weather products and services. In Proceedings of the Seventh American Meteorological Society Symposium on Policy and Socio-economic Research, New Orleans, LA, USA, 22–26 January 2012; Available online: https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper197676/Losego_etal_2012%20Ext%20Manuscript_Final.pdf (accessed on 9 March 2024).
- Morrow, B.H.; Lazo, J.K. Coastal emergency managers’ preferences for storm surge forecast communication. J. Emerg. Manag. 2014, 12, 153–160. [Google Scholar] [CrossRef]
- Munroe, R.; Montz, B.; Curtis, S. Getting more out of storm surge forecasts: Emergency support personnel needs in North Carolina. Weather Clim. Soc. 2018, 10, 813–820. [Google Scholar] [CrossRef]
- Morss, R.E.; Vickery, J.; Lazrus, H.; Demuth, J.; Bostrom, A. Improving tropical cyclone forecast communication by understanding NWS partners’ decision timelines and forecast information needs. Weather Clim. Soc. 2022, 14, 783–800. [Google Scholar] [CrossRef]
- Morss, R.E.; Vickery, J.; Bostrom, A.; Demuth, J.L.; Lazrus, H.; Laidlaw, E.L.; Hadjimichael, N. Modernizing the NWS Tropical Cyclone Product Suite by Evaluating NWS Partner Decisions and Information Needs: Cross-Method Synthesis of Key Findings and Recommendations. 2022. Available online: https://repository.library.noaa.gov/view/noaa/47955 (accessed on 6 April 2024).
- Colle, B.A.; Bowman, M.J.; Roberts, K.J.; Bowman, M.H.; Flagg, C.N.; Kuang, J.; Weng, Y.; Munsell, E.B.; Zhang, F. Exploring water level sensitivity for metropolitan New York during Sandy (2012) using ensemble storm surge simulations. J. Mar. Sci. Eng. 2015, 3, 428–443. [Google Scholar] [CrossRef]
- Kowaleski, A.; Morss, R.E.; Ahijevych, D.; Fossell, K.R. Using a WRF-ADCIRC ensemble and track clustering to investigate storm surge hazards and inundation scenarios associated with Hurricane Irma. Weather Forecast. 2020, 35, 1289–1315. [Google Scholar] [CrossRef]
- Fossell, K.R.; Ahijevych, D.; Morss, R.E.; Snyder, C.; Davis, C. The practical predictability of storm tide from tropical cyclones in the Gulf of Mexico. Mon. Weather Rev. 2017, 145, 5103–5121. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Muhammad, A.; Curcic, M.; Fathi, A.; Dawson, C.; Chen, S.; Luettich, R., Jr. Sensitivity of storm surge predictions to atmospheric forcing during Hurricane Isaac. J. Waterw. Port Coast. Ocean Eng. 2017, 144, 04017035:1–04017035:24. [Google Scholar] [CrossRef]
- Camelo, J.; Mayo, T.L.; Gutmann, E.D. Projected climate change impacts on hurricane storm surge inundation in the coastal United States. Front. Built Environ. 2020, 6, 588049:1–588049:16. [Google Scholar] [CrossRef]
- Kohno, N.; Dube, S.K.; Entel, M.; Fakhruddin, S.H.M.; Greenslade, D.; Leroux, M.D.; Rhome, J.; Thuy, N.B. Recent progress in storm surge forecasting. Trop. Cyclone Res. Rev. 2018, 7, 128–139. [Google Scholar] [CrossRef]
- Taylor, A.A.; Glahn, B. Probabilistic guidance for hurricane storm surge. In Proceedings of the 88th Annual Meeting of the American Meteorological Society, New Orleans, LA, USA, 20–24 January 2008; Available online: http://www.nws.noaa.gov/mdl/pubs/Documents/Papers/psurge_ofcl_200801_AMS.pdf (accessed on 8 February 2024).
- Fleming, J.; Fulcher, C.; Luettich, R.A., Jr.; Estrade, B.; Allen, G.; Winer, H. A real time storm surge forecasting system using ADCIRC. In Proceedings of the 10th International Conference on Estuarine and Coastal Modeling, Newport, RI, USA, 5–7 November 2007; ASCE: Reston, VA, USA, 2008; pp. 893–912. [Google Scholar] [CrossRef]
- Davis, J.R.; Paramygin, V.A.; Forrest, D.; Sheng, Y.P. Towards the probabilistic simulation of storm surge and inundation in a limited resource environment. Mon. Weather Rev. 2010, 138, 2953–2974. [Google Scholar] [CrossRef]
- Irish, J.L.; Resio, D.T.; Ratcliff, J.J. The influence of storm size on hurricane surge. J. Phys. Oceanogr. 2008, 38, 2003–2013. [Google Scholar] [CrossRef]
- Rego, J.L.; Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 2009, 36, L07609:1–L07609:5. [Google Scholar] [CrossRef]
- Lin, C.-W.; Wu, T.-R.; Tsai, Y.-L.; Chuang, S.-C.; Chu, C.-H.; Terng, C.-T. Member formation methods evaluation for a storm surge ensemble forecast system in Taiwan. Water 2023, 15, 1826. [Google Scholar] [CrossRef]
- Pringle, W.J.; Burnett, Z.; Sargsyan, K.; Moghimi, S.; Myers, E. Efficient probabilistic prediction and uncertainty quantification of tropical cyclone–driven storm tides and inundation. Artif. Intell. Earth Syst. 2023, 2, e220040:1–e220040:19. [Google Scholar] [CrossRef]
- Bloemendaal, N.; Muis, S.; Haarsma, R.J.; Verlaan, M.; Irazoqui Apecechea, M.; de Moel, H.; Ward, P.J.; Aerts, J.C.J.H. Global modeling of tropical cyclone storm surges using high-resolution forecasts. Clim. Dyn. 2019, 52, 5031–5044. [Google Scholar] [CrossRef]
- Torres, M.J.; Hashemi, M.R.; Hayward, S.; Spaulding, M.; Ginis, I.; Grilli, S.T. Role of hurricane wind models in accurate simulation of storm surge and waves. J. Waterw. Port Coast. Ocean. Eng. 2019, 145, 04018039:1–04018039:17. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef]
- Murty, P.L.N.; Siva Srinivas, K.; Rama Rao, E.P.; Bhaskaran, P.K.; Shenoi, S.S.C.; Padmanabham, J. Improved cyclonic wind fields over the Bay of Bengal and their application in storm surge and wave computations. Appl. Ocean Res. 2020, 95, 102048:1–102048:12. [Google Scholar] [CrossRef]
- Zhang, F.; Li, M.; Ross, A.C.; Lee, S.B.; Zhang, D. Sensitivity analysis of Hurricane Arthur (2014) storm surge forecasts to WRF physics parameterizations and model configurations. Weather Forecast. 2017, 32, 1745–1764. [Google Scholar] [CrossRef]
- Blanton, B.; Dresback, K.; Colle, B.; Kolar, R.; Vergara, H.; Hong, Y.; Leonardo, N.; Davidson, R.; Nozick, L.; Wachtendorf, T. An integrated scenario ensemble-based framework for hurricane evacuation modeling: Part 2—Hazard Modeling. Risk Anal. 2018, 40, 117–133. [Google Scholar] [CrossRef]
- Mohanty, S.; Nadimpalli, R.; Mohanty, U.C.; Pattanayak, S. Storm surge prediction improvement using high resolution meso-scale model products over the Bay of Bengal. Nat. Hazards 2024, 120, 1185–1213. [Google Scholar] [CrossRef]
- Lin, N.; Chavas, D. On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res. Atmos. 2012, 117, D09120:1–D09120:19. [Google Scholar] [CrossRef]
- Ramos Valle, A.N.; Curchitser, E.N.; Bruyere, C.L.; Fossell, K.R. Simulating storm surge impacts with a coupled atmosphere-inundation model with varying meteorological forcing. J. Mar. Sci. Eng. 2018, 6, 35. [Google Scholar] [CrossRef]
- Mayo, T.; Lin, N. The effect of the surface wind field representation in the operational storm surge model of the National Hurricane Center. Atmosphere 2019, 10, 193. [Google Scholar] [CrossRef]
- Beven, J.L., II; Berg, R.; Hagen, A. Tropical Cyclone Report: Hurricane Michael (AL142018), 7 October–11 October 2018. Technical Report, NOAA/National Hurricane Center. 2019. Available online: https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf (accessed on 15 November 2020).
- Davis, J.; Mitsova, D.; Briggs, T.C.; Briggs, T.R. Post-Hurricane Michael damage assessment using ADCIRC storm surge hindcast, image classification, and LiDAR. Shore Beach 2019, 87, 3–14. [Google Scholar] [CrossRef]
- Hazelton, A.T.; Zhang, X.; Gopalakrishnan, S.; Ramstrom, W.; Marks, F.; Zhang, J.A. High-resolution ensemble HFV3 forecasts of Hurricane Michael (2018): Rapid intensification in shear. Mon. Weather Rev. 2020, 148, 2009–2032. [Google Scholar] [CrossRef]
- Torn, R.D.; DeMaria, M. Validation of ensemble-based probabilistic tropical cyclone intensity change. Atmosphere 2021, 12, 373. [Google Scholar] [CrossRef]
- Alland, J.J.; Davis, C.A. Effects of surface fluxes on ventilation pathways and the intensification of Hurricane Michael (2018). J. Atmos. Sci. 2022, 79, 1211–1229. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Luettich, R.A., Jr.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries; Report 1, Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL; Coastal Engineering Research Center: Vicksburg, MS, USA, 1992. [Google Scholar]
- Kim, S.W.; Melby, J.A.; Nadal-Caraballo, N.C.; Radcliff, J. A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Nat. Hazards 2015, 76, 565–585. [Google Scholar] [CrossRef]
- Nezhad, S.K.; Barooni, M.; Velioglu Sogut, D.; Weaver, R.J. Ensemble neural networks for the development of storm surge flood modeling: A comprehensive review. J. Mar. Sci. Eng. 2023, 11, 2154. [Google Scholar] [CrossRef]
- Gladwin, C.H.; Gladwin, H.; Peacock, W.G. Modeling hurricane evacuation decisions with ethnographic methods. Int. J. Mass Emerg. Disasters 2001, 19, 117–143. [Google Scholar] [CrossRef]
- Dash, N.; Gladwin, H. Evacuation decision making and behavioral responses: Individual and household. Nat. Hazards Rev. 2007, 8, 69–77. [Google Scholar] [CrossRef]
- Morss, R.E.; Hayden, M.H. Storm surge and “certain death”: Interviews with Texas coastal residents following Hurricane Ike. Weather Clim. Soc. 2010, 2, 174–189. [Google Scholar] [CrossRef]
- Demuth, J.L.; Morss, R.E.; Palen, L.; Anderson, K.M.; Anderson, J.; Kogan, M.; Stowe, K.; Bica, M.; Lazrus, H.; Wilhelmi, O.; et al. “Sometimes da #beachlife ain’t always da wave”: Understanding people’s evolving hurricane risk communication, risk assessments, and responses using Twitter narratives. Weather Clim. Soc. 2018, 10, 537–560. [Google Scholar] [CrossRef]
- Lazrus, H.; Wilhelmi, O.; Morss, R.; Henderson, J.; Dietrich, A. Information as intervention: How hurricane risk communication interacted with vulnerability and capacities in Hurricane Sandy. Int. J. Mass Emerg. Disasters 2020, 38, 89–120. [Google Scholar] [CrossRef]
- Senkbeil, J.; Collins, J.; Reed, J. Evacuee perception of geophysical hazards for Hurricane Irma. Weather Clim. Soc. 2019, 11, 217–227. [Google Scholar] [CrossRef]
- Milch, K.; Broad, K.; Orlove, B.; Meyer, R. Decision science perspectives on hurricane vulnerability: Evidence from the 2010–2012 Atlantic hurricane seasons. Atmosphere 2018, 9, 32. [Google Scholar] [CrossRef]
- Millet, B.; Carter, A.P.; Broad, K.; Cairo, A.; Evans, S.D.; Majumdar, S.J. Hurricane risk communication: Visualization and behavioral science concepts. Weather Clim. Soc. 2020, 12, 193–211. [Google Scholar] [CrossRef]
- Wilhelmi, O.; Morss, R.E.; Lazrus, H.; Boehnert, J.; Gambill, J.M. Examining the roles of visualizations in people’s understanding of uncertain storm surge forecasts, interpretation of risk, and decision-making. Int. J. Disaster Risk Reduct. 2024, 107, 104424:1. [Google Scholar] [CrossRef]
- Luettich, R., Jr.; Westerink, J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44; University of North Carolina: Chapel Hill, NC, USA, 2004; Available online: https://adcirc.org/wp-content/uploads/sites/2255/2018/11/adcirc_theory_2004_12_08.pdf (accessed on 8 February 2024).
- ADCIRC Github Repo Version 55.02. Available online: https://github.com/adcirc/adcirc.git (accessed on 8 March 2024).
- Luettich, R.A., Jr.; Westerink, J.J. ADCIRC User’s Manual—V53. 2018. Available online: https://adcirc.org/home/documentation/ (accessed on 8 February 2024).
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Luettich, R., Jr.; University of North Carolina, Morehead City, NC, USA. Personal communication, 2020.
- Magnusson, L.; Dahoui, M.; Velden, C.S.; Olander, T.L. A Fresh Look at Tropical Cyclone Intensity Estimates. In ECMWF Newsletter, Number 152—Summer 2017; Available online: https://www.ecmwf.int/en/newsletter/152/news/fresh-look-tropical-cyclone-intensity-estimates (accessed on 7 March 2024).
- ECMWF. IFS Documentation—Cy45r1; Operational Implementation 5 June 2018; Part V: Ensemble Prediction System. 2018. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2018/80896-ifs-documentation-cy45r1-part-v-ensemble-prediction-system_1.pdf (accessed on 26 January 2024).
- Bougeault, P.; Toth, Z.; Bishop, C.; Brown, B.; Burridge, D.; Chen, D.H.; Ebert, B.; Fuentes, M.; Hamill, T.M.; Mylne, K.; et al. The THORPEX Interactive Grand Global Ensemble. Bull. Am. Meteorol. Soc. 2010, 91, 1059–1072. [Google Scholar] [CrossRef]
- Swinbank, R.; Kyouda, M.; Buchanan, P.; Froude, L.; Hamill, T.M.; Hewson, T.D.; Keller, J.H.; Matsueda, M.; Methven, J.; Pappenberger, F.; et al. The TIGGE project and its achievements. Bull. Am. Meteorol. Soc. 2016, 97, 49–67. [Google Scholar] [CrossRef]
- Magnusson, L.; Bidlot, J.-R.; Bonavita, M.; Brown, A.; Browne, P.; De Chiara, G.; Dahoui, M.; Lang, S.T.K.; McNally, T.; Mogensen, K.S.; et al. ECMWF activities for improved hurricane forecasts. Bull. Am. Meteorol. Soc. 2019, 100, 445–458. [Google Scholar] [CrossRef]
- Aijaz, S.; Kepert, J.D.; Ye, H.; Huang, Z.; Hawksford, A. Bias correction of tropical cyclone parameters in the ECMWF Ensemble Prediction System in Australia. Mon. Weather Rev. 2019, 147, 4261–4285. [Google Scholar] [CrossRef]
- Bidlot, J.-R.; Prates, F.; Ribas, R.; Mueller-Quintino, A.; Crepulja, M.; Vitart, F. Enhancing Tropical Cyclone Wind Forecasts. In ECMWF Newsletter, Number 164—Summer 2020; Available online: https://www.ecmwf.int/en/newsletter/164/meteorology/enhancing-tropical-cyclone-wind-forecasts (accessed on 8 March 2024).
- Majumdar, S.J.; Magnusson, L.; Bechtold, P.; Bidlot, J.R.; Doyle, J.D. Advanced tropical cyclone prediction using the experimental global ECMWF and operational regional COAMPS-TC systems. Mon. Weather Rev. 2023, 151, 2029–2048. [Google Scholar] [CrossRef]
- Knaff, J.A.; Zehr, R.M. Reexamination of tropical cyclone wind–pressure relationships. Weather Forecast. 2007, 22, 71–88. [Google Scholar] [CrossRef]
- Riverside Technology and AECOM. Mesh Development, Tidal Validation, and Hindcast Skill Assessment of an ADCIRC Model for the Hurricane Storm Surge Operational Forecast System on the US Gulf-Atlantic Coast; Riverside Technology, Inc.: Fort Collins, CO, USA, 2005. [Google Scholar] [CrossRef]
- Feyen, J.; Vinogradov, S.; Asher, T.G.; Halgren, J.; Funakoshi, Y. 2015: Development of Operational Storm Surge Guidance to Support Total Water Predictions. In Proceedings of the 14th International Workshop on Wave Hindcasting and Forecasting/Fifth Coastal Hazard Symposium, Key West, FL, USA, 8–13 November 2015; Available online: http://www.waveworkshop.org/14thWaves/Presentations/X3_Feyen_Waves_OpsSurgeGuidance_Nov2015-FINAL.pdf (accessed on 9 March 2024).
- Asher, T.G.; Luettich, R.A., Jr.; Fleming, J.G.; Blanton, B.O. Low frequency water level correction in storm surge models using data assimilation. Ocean Model. 2019, 144, 101483:1–101483:17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Dietrich, J.C.; Asher, T.; Bell, M.; Blanton, B.; Copeland, J.; Cox, A.; Dawson, C.; Fleming, J.; Luettich, R., Jr. Influence of storm timing and forward speed on tides and storm surge during Hurricane Matthew. Ocean Model. 2019, 137, 1–19. [Google Scholar] [CrossRef]
- Byrne, M.J., Sr. Monitoring Storm Tide from Hurricane Michael along the Northwest Coast of Florida, October 2018. U.S. Geological Survey Open-File Report 2019–1059, USGS. 2019. Available online: https://pubs.usgs.gov/publication/ofr20191059 (accessed on 26 January 2024).
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D. Correlating storm surge heights with tropical cyclone winds at and before landfall. Earth Interact. 2014, 18, 1–26. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D. An empirical analysis on the relationship between tropical cyclone size and storm surge heights along the U.S. Gulf Coast. Earth Interact. 2014, 18, 1–15. [Google Scholar] [CrossRef]
- Ramos Valle, A.N.; Curchitser, E.N.; Bruyere, C.L. Impact of tropical cyclone landfall angle on storm surge along the Mid-Atlantic Bight. J. Geophys. Res. Atmos. 2020, 125, e2019JD031796:1–e2019JD031796:19. [Google Scholar] [CrossRef]
- Kyprioti, A.P.; Adeli, E.; Taflanidis, A.A.; Westerink, J.J.; Tolman, H.L. Probabilistic storm surge estimation for landfalling hurricanes: Advancements in computational efficiency using quasi-Monte Carlo techniques. J. Mar. Sci. Eng. 2021, 9, 1322. [Google Scholar] [CrossRef]
- van Ormondt, M.; van Dongeren, A.; Roelvink, D. A semi-empirical method for computing storm surges on open coasts during tropical cyclones. Coast. Eng. 2021, 165, 103839:1–103839:26. [Google Scholar] [CrossRef]
- Jordan, M.R., II; Clayson, C.A. A new approach to using wind speed for prediction of tropical cyclone generated storm surge. Geophys. Res. Lett. 2008, 35, L13802:1–L13802:3. [Google Scholar] [CrossRef]
- Yang, K.; Paramygin, V.A.; Sheng, Y.P. A rapid forecasting and mapping system of storm surge and coastal flooding. Weather Forecast. 2020, 35, 1663–1681. [Google Scholar] [CrossRef]
- Lin, N.; Lane, P.; Emanuel, K.A.; Sullivan, R.M.; Donnelly, J.P. Heightened hurricane surge risk in northwest Florida revealed from climatological-hydrodynamic modeling and paleo-record reconstruction. J. Geophys. Res. Atmos. 2014, 119, 8606–8623. [Google Scholar] [CrossRef]
- Vijayan, L.; Huang, W.; Ma, M.; Ozguven, E.; Ghorbanzadeh, M.; Yang, J.; Yang, Z. Improving the accuracy of hurricane wave modeling in Gulf of Mexico with dynamically-coupled SWAN and ADCIRC. Ocean Eng. 2023, 274, 114044:1–114044:14. [Google Scholar] [CrossRef]
- A World of Weather: Fundamentals of Meteorology: 5b. More on Ensemble Forecasting. Available online: https://www.e-education.psu.edu/worldofweather/s12.html (accessed on 7 March 2024).
- Lockwood, J.W.; Lin, N.; Gori, A.; Oppenheimer, M. Increasing flood hazard posed by tropical cyclone rapid intensification in a changing climate. Geophys. Res. Lett. 2024, 51, e2023GL105624:1–e2023GL105624:10. [Google Scholar] [CrossRef]
- Calzada, J.; Burnett, Z.; Moghimi, S.; Myers, E.; Pe’eri, S. ADCIRCpy: A Python API to Generate ADCIRC Model Input Files. NOAA NOS OCS Technical Memorandum No. 41. 2021. Available online: https://pypi.org/project/adcircpy/ (accessed on 7 March 2024).
- Courtney, J.; Knaff, J.A. 2009: Adapting the Knaff and Zehr wind-pressure relationship for operational use in Tropical Cyclone Warning Centres. Aust. Meteorol. Oceanogr. 2009, 58, 167–179. [Google Scholar] [CrossRef]
Initialization Time | Approximate Lead Time Prior to Landfall | OFCL | Parameterized TC Ensemble: before Intensity Adjustment | Parameterized TC Ensemble: after Intensity Adjustment | ||
---|---|---|---|---|---|---|
Vmax1_L | Vmax1_L Ensemble Mean (Range) | Pmin1_L Ensemble Mean (Range) | Vmax1_L Ensemble Mean (Range) | Pmin1_L Ensemble Mean (Range) | ||
0 UTC 8 October | 66 h | 85 | 74 (53–96) | 965 (945–993) | 90 (65–121) | 963 (935–983) |
12 UTC 8 October | 54 h | 105 | 70 (56–85) | 970 (951–989) | 109 (88–140) | 948 (919–963) |
0 UTC 9 October | 42 h | 105 | 82 (73–94) | 956 (937–971) | 108 (83–128) | 949 (932–968) |
12 UTC 9 October | 30 h | 110 | 83 (66–99) | 956 (944–976) | 113 (83–134) | 944 (926–968) |
0 UTC 10 October | 18 h | 115 | 83 (62–97) | 958 (947–974) | 118 (95–146) | 940 (915–959) |
Location Number | Station Name | Station Site Number | Latitude (°N) | Longitude (°E) | Observed Maximum Water Level (m) |
---|---|---|---|---|---|
1 | Shalimar | FLOKA03301 | 30.4434 | −86.5844 | 1.009 |
2 | Panama City Beach | FLBAY26247 | 30.1316 | −85.7432 | 1.573 |
3 | Mexico Beach | FLBAY03283 | 29.9490 | −85.4246 | 4.740 |
4 | Port St. Joe | FLGUL26254 | 29.7268 | −85.3914 | 2.411 |
5 | Apalachicola | FLFRA03276 | 29.7232 | −84.9830 | 2.505 |
6 | East Point—St. George Island State Park | FLFRA26257 | 29.7031 | −84.7619 | 2.478 |
7 | Panacea—Ochlockonee Bay | FLWAL03369 | 29.9770 | −84.3840 | 2.566 |
8 | Alligator Point | FLFRA26263 | 29.8939 | −84.3736 | 2.643 |
9 | St. Marks | FLWAK03364 | 30.1518 | −84.2090 | 2.859 |
10 | Aucilla River | FLTAY17325 | 30.1165 | −83.9795 | 2.743 |
11 | Ecofina River | FLTAY03362 | 30.0586 | −83.9066 | 2.667 |
12 | Perry—Spring Warrior Fish Camp | FLTAY03359 | 29.9201 | −83.6704 | 2.518 |
13 | Keaton Beach | FLTAY03356 | 29.8189 | −83.5949 | 2.350 |
14 | Dark Island | FLTAY25003 | 29.8040 | −83.5888 | 2.356 |
15 | Hagens Cove | FLTAY03355 | 29.7730 | −83.5795 | 2.326 |
16 | Big Bend Wildlife Management Area | FLTAY24950 | 29.7215 | −83.4865 | 2.225 |
17 | Steinhatchee River | FLDIX03354 | 29.6701 | −83.3891 | 2.067 |
Initialization Time | Approximate Lead Time Prior to Landfall | Brier Skill Score | |
---|---|---|---|
Inundation ≥ 1 m | Inundation ≥ 0.3 m | ||
0 UTC 8 October | 66 h | 0.57 | 0.72 |
12 UTC 8 October | 54 h | 0.57 | 0.69 |
0 UTC 9 October | 42 h | 0.66 | 0.76 |
12 UTC 9 October | 30 h | 0.72 | 0.77 |
0 UTC 10 October | 18 h | 0.82 | 0.84 |
Initialization Time | Approx. Lead Time | Longitude (°E) | Vmax (kt) | R34 in SE Quadrant (nmi) | Direction (°) | Forward Speed (kt) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−6 h | 0 h | +6 h | −6 h | 0 h | +6 h | −6 h | 0 h | +6 h | −6 h | 0 h | +6 h | −6 h | 0 h | +6 h | ||
0 UTC 8 October | 66 h | 0.61 | 0.59 | 0.58 | 0.40 | 0.59 | 0.64 | 0.09 | 0.18 | 0.47 | 0.15 | 0.07 | −0.08 | −0.15 | −0.01 | 0.09 |
0 UTC 9 October | 42 h | 0.78 | 0.74 | 0.72 | −0.32 | 0.47 | 0.72 | 0.00 | 0.19 | 0.60 | 0.63 | 0.52 | 0.33 | −0.68 | −0.59 | −0.47 |
0 UTC 10 October | 18 h | 0.62 | 0.53 | 0.41 | 0.39 | 0.39 | 0.42 | 0.35 | 0.46 | 0.59 | −0.02 | −0.09 | −0.29 | 0.06 | −0.03 | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morss, R.E.; Ahijevych, D.; Fossell, K.R.; Kowaleski, A.M.; Davis, C.A. Predictability of Hurricane Storm Surge: An Ensemble Forecasting Approach Using Global Atmospheric Model Data. Water 2024, 16, 1523. https://doi.org/10.3390/w16111523
Morss RE, Ahijevych D, Fossell KR, Kowaleski AM, Davis CA. Predictability of Hurricane Storm Surge: An Ensemble Forecasting Approach Using Global Atmospheric Model Data. Water. 2024; 16(11):1523. https://doi.org/10.3390/w16111523
Chicago/Turabian StyleMorss, Rebecca E., David Ahijevych, Kathryn R. Fossell, Alex M. Kowaleski, and Christopher A. Davis. 2024. "Predictability of Hurricane Storm Surge: An Ensemble Forecasting Approach Using Global Atmospheric Model Data" Water 16, no. 11: 1523. https://doi.org/10.3390/w16111523
APA StyleMorss, R. E., Ahijevych, D., Fossell, K. R., Kowaleski, A. M., & Davis, C. A. (2024). Predictability of Hurricane Storm Surge: An Ensemble Forecasting Approach Using Global Atmospheric Model Data. Water, 16(11), 1523. https://doi.org/10.3390/w16111523