Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Water Table Depth Data
2.1.2. Brightness Temperature Data
2.1.3. Soil Moisture Data
2.2. Groundwater Table
2.3. Surface Brightness Temperature and Soil Moisture
2.4. Artificial Neural Network (ANN)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreasen, D.C.; Nardi, M.R.; Staley, A.W.; Achmad, G.; Grace, J.W. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources. In Geoscience for the Public Good and Global Development: Toward a Sustainable Future; Wessel, G.R., Greenberg, J.K., Eds.; Geological Society of America: Boulder, CO, USA, 2016; Volume 520, pp. 159–170. [Google Scholar] [CrossRef]
- Sanford, W.E.; Pope, J.P.; Selnick, D.L.; Stumvoll, R.F. Simulation of Groundwater Flow in the Shallow Aquifer System of the Delmarva Peninsula, Maryland and Delaware; No. 2012-1140; US Geological Survey: Reston, VA, USA, 2012; p. i-58. [Google Scholar]
- Shirmohammadi, A.M.; Rowe, S.; Kasraei, R.; Summers, B.; Michael, R.; Ortt, H.; Schmidt, R.; Shedlock, D.; Nemazi, M.; Negahban–Azar, M.; et al. Stressed Aquifers on the Coastal Plain of Maryland. In Proceedings of the American Geophysical Union (AGU), Quest for Sustainability of Heavily Stressed Aquifers at regional to Global Scales, Valencia, Spain, 21–24 October 2019. [Google Scholar]
- Groundwater Protection Program Report to the Maryland General Assembly; Annapolis, MD, USA. 2021. Available online: https://mde.maryland.gov/programs/water/water_supply/Documents/GroundwaterProtectionReport-2021-Dec.pdf (accessed on 9 February 2024).
- Chinnasamy, P.; Shiri, J. Groundwater management: Recent advances and applications. J. Hydrol. 2018, 558, 100–111. [Google Scholar]
- Kardan Moghaddam, H.; Kardan Moghaddam, H.; Rahimzadeh Kivi, Z.; Bahreinimotlagh, M.; Alizadeh, M.J. Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundw. Sustain. Dev. 2019, 9, 100237. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Wang, X.; Zhou, W. Groundwater depth forecasting using a coupled model. Discret. Dyn. Nat. Soc. 2021, 2021, 6614195. [Google Scholar] [CrossRef]
- Li, W.; Bao, L.; Yao, G.; Wang, F.; Guo, Q.; Zhu, J.; Zhu, J.; Wang, Z.; Bi, J.; Zhu, C.; et al. The analysis on groundwater storage variations from GRACE/GRACE-FO in recent 20 years driven by influencing factors and prediction in Shandong Province, China. Sci. Rep. 2024, 14, 5819. [Google Scholar] [CrossRef]
- Mirzavand, M.; Ghazavi, R.A. Stochastic Modelling Technique for Groundwater Level Forecasting in an Arid Environment Using Time Series Methods. Water Resour. Manag. 2015, 29, 1315–1328. [Google Scholar] [CrossRef]
- Mogaji, K.A.; Lim, H.S.; Abdullah, K. Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters, a case of groundwater resources management. Environ. Earth Sci. 2015, 73, 1217–1230. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K.; Sarangi, A.; Rai, A.; Khanna, M.; Sahoo, R.N. Time series analysis of groundwater levels and projection of future trend. J. Geol. Soc. India 2015, 85, 232–242. [Google Scholar] [CrossRef]
- Patel, P.; Kumar, P.; Rajni. The numerical solution of Boussinesq equation for shallow water waves. AIP Conf. Proc. 2020, 2214, 020019. [Google Scholar] [CrossRef]
- Pozdniakov, S.P.; Wang, P.; Grinevsky, S.O.; Frolova, N.L. A Physically Based Model of a Two-Pass Digital Filter for Separating Groundwater Runoff From Streamflow Time Series. Water Resour. Res. 2022, 58, e2021WR031333. [Google Scholar] [CrossRef]
- Ebel, B.A.; Shephard, Z.M.; Walvoord, M.A.; Murphy, S.F.; Partridge, T.F.; Perkins, K.S. Modeling Post-Wildfire Hydrologic Response: Review and Future Directions for Applications of Physically Based Distributed Simulation. Earth’s Future 2023, 11, e2022EF003038. [Google Scholar] [CrossRef]
- Vujevic, K.; Deissinger, P.; Klocking, B.; Pfutzner, B.; Weiss, J. Regional water balance modelling to evaluate future groundwater management. Grundwasser 2023, 28, 271–285. [Google Scholar] [CrossRef]
- Scheibe, C. Groundwater- and surface water balance in aquifers of the ostliche Bodenwohrer Senke, Oberpfalz. Water Resour. Manag. 2022, 27, 171–185. [Google Scholar] [CrossRef]
- Abebe, W.T. Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia. Water Resour. Power 2022, 10, 209–222. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, W.; Wang, G.R.; Xue, W.F. Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models. Water Resour. Manag. 2022, 36, 5461–5494. [Google Scholar] [CrossRef]
- Eslami, P.; Nasirian, A.; Akbarpour, A.; Tahroudi, M.N. Groundwater estimation of Ghayen plain with regression-based and hybrid time series models. Paddy Water Environ. 2022, 20, 429–440. [Google Scholar] [CrossRef]
- Tsuchihara, T.; Yoshimoto, S.; Shirahata, K.; Nakazato, H.; Ishida, S. Analysis of groundwater-level fluctuation and linear regression modeling for prediction of initial groundwater level during irrigation of rice paddies in the Nasunogahara alluvial fan, central Japan. Environ. Earth Sci. 2023, 82, 473. [Google Scholar] [CrossRef]
- Shirmohammadi, A.; Chaubey, I.; Harmel, R.D.; Bosch, D.D.; Munoz-Carpena, R.; Dharmarsi, C.; Sexton, A.; Arabi, M.; Wolfe, M.L.; Frankenberger, J.; et al. Uncertainity in TMDL Models. Trans. ASABE 2006, 494, 1033–1049. [Google Scholar] [CrossRef]
- Medawela, S.; Armaghani, D.J.; Indraratna, B.; Rowe, R.K.; Thamwattana, N. Development of an ad-vanced machine learning model to predict the pH of groundwater in permeable reactive barriers (PRBs) located in acidic terrain. Comput. Geotech. 2023, 161, 105557. [Google Scholar] [CrossRef]
- Sahoo, S.; Jha, M.K. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865–1887. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Sudheer, C.; Mahammood, V.; Panigrahi, B.K. An integrated wavelet-support vector ma-chine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 2014, 145, 324–335. [Google Scholar] [CrossRef]
- Wen, X.; Feng, Q.; Yu, H.; Wu, J.; Si, J.; Chang, Z.; Xi, C. Wavelet and adaptive neuro-fuzzy inference system conjunction model for groundwater level predicting in a coastal aquifer. Neural Comput. Appl. 2015, 26, 1203–1215. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resour. Manag. 2014, 15, 5433–5446. [Google Scholar] [CrossRef]
- Dogan, A.; Demirpence, H.; Cobaner, M. Prediction of groundwater levels from lake levels and climate data using ANN approach. Water SA 2008, 34, 199–208. [Google Scholar] [CrossRef]
- Reuter, U.; Moller, B. Artificial Neural Networks for Forecasting of Fuzzy Time Series. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 363–374. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Vafakhah, M.; Moosavi, V.; Moghaddamnia, A. Application of several data-driven techniques for predicting groundwater level. Water Resour. Manag. 2012, 27, 419–432. [Google Scholar] [CrossRef]
- Kuo, J.T.; Hsieh, M.H.; Lung, W.S.; She, N. Using artificial neural network for reservoir eutrophication prediction. Ecol. Model. 2006, 200, 171–177. [Google Scholar] [CrossRef]
- Alzahrani, R.A.; Parker, A.C. Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling. In Proceedings of the International Conference on Neuromorphic Systems 2020 (ICONS 2020), Association for Computing Machinery, New York, NY, USA, 28–30 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Salami, E.S.; Ehteshami, M. Simulation, evaluation and prediction modeling of river water quality properties (case study: Ireland Rivers). Int. J. Eng. Sci. Technol. 2015, 12, 3235–3242. [Google Scholar] [CrossRef]
- Ehteshami, M.; Dolatabadi, N.F.; Tavassoli, S. Simulation of nitrate contamination in groundwater using artificial neural networks. Model Earth Syst. Environ. 2016, 2, 28. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, P. River water quality modelling using artificial neural network technique. International conference on water resources, coastal and ocean engineering (icwrcoe 2015). Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Coulibaly, P.; Tsanis, I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309, 229–240. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Kumar, A.; Panda, D.K. Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi-Surua Inter-basin of Odisha India. J. Hydrol. 2013, 495, 38–51. [Google Scholar] [CrossRef]
- Shiri, J.; Kisi, O.; Yoon, H.; Lee, K.K.; Nazemi, A.H. Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques. Comput. Geosci. 2013, 56, 32–44. [Google Scholar] [CrossRef]
- NSIDC. Home Page. 2008. Available online: http://nsidc.org/daac/projects/passivemicro/amsre.html (accessed on 15 February 2008).
- USGS. Water Resources Data: Maryland and Delaware Water Year 2001; Ground-Water Data, USGS Water-Data Report MD-DE-01-2; USGS: Reston, VA, USA, 2021; Volume 2. [Google Scholar]
- Ashcroft, P.; Wentz, F. Updated Daily. AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures V002, Mar 2008; Digital Media; National Snow and Ice Data Center: Boulder, CO, USA, 2006. [Google Scholar]
- Mitchell, K.; Houser, P.; Wood, E.; Schaake, J.; Tarpley, D.; Lettenmaier, D.; Higgins, W.; Marshall, C.; Lohmann, D.; Ek, M.; et al. GCIP Land Data Assimilation Systems (LDAS) Project Now Underway; World Climate Research Programme; GEWEX News: Fairfax, VA, USA, 1999. [Google Scholar]
- Selker, J.S.; Keller, C.K.; McCord, J.T. Vadose Zone Processes; Lewis Publishers: Boca Raton, FL, USA, 1999; p. 339. [Google Scholar]
- Schmugge, T.; Gloersen, P.; Wilheit, T.; Geiger, F. Remote Sensing of Soil Moisture with Microwave Radiometers. J. Geophys. Res. 1974, 79, 317–323. [Google Scholar] [CrossRef]
- Schmugge, T. Remote Sensing of Surface Soil Moisture. J. Appl. Meteorol. 1978, 17, 1549–1557. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Zhang, W.; Ye, X.; Liu, X. A Modified Temperature-Vegetation Dryness Index (MTVDI) for Assessment of Surface Soil Moisture Based on MODIS Data. Chin. Geogr. Sci. 2022, 32, 592–605. [Google Scholar] [CrossRef]
- Gao, Y.; Lian, X.; Ge, L. Inversion model of surface bare soil temperature and water content based on UAV thermal infrared remote sensing. Infrared Phys. Technol. 2022, 125, 104289. [Google Scholar] [CrossRef]
- Ahmadi, S.; Alizadeh, H.; Mojaradi, B. Land surface temperature assimilation into a soil moisture-temperature model for retrieving farm-scale root zone soil moisture. Geoderma 2022, 421, 115923. [Google Scholar] [CrossRef]
- Zou, J.; Gao, J.; Wei, J.; Fan, C. Soil moisture monitoring based on long-term time series land surface temperature (LST) data-a case study in Hebi city, Henan province. Bangladesh J. Bot. 2020, 49, 735–742. [Google Scholar]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Socha, P.; Miškovský, V.; Kubátová, H.; Novotný, M. Correlation Power Analysis Distinguisher Based on the Correlation Trace Derivative. In Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018; pp. 565–568. [Google Scholar] [CrossRef]
- Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Coulibaly, P.; Anctil, F.; Aravena, R.; Bobee, B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 2001, 37, 885–896. [Google Scholar] [CrossRef]
- Shamsuddin MK, N.; Kusin, F.M.; Sulaiman, W.N.A.; Ramli, M.F.; Baharuddin MF, T.; Adnan, M.S. Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration. In MATEC Web of Conferences; EDP Sciences: London, UK, 2017; Volume 103, p. 04007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, M.; Shirmohammadi, A. Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table. Water 2024, 16, 1500. https://doi.org/10.3390/w16111500
Mirzaei M, Shirmohammadi A. Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table. Water. 2024; 16(11):1500. https://doi.org/10.3390/w16111500
Chicago/Turabian StyleMirzaei, Majid, and Adel Shirmohammadi. 2024. "Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table" Water 16, no. 11: 1500. https://doi.org/10.3390/w16111500
APA StyleMirzaei, M., & Shirmohammadi, A. (2024). Utilizing Data-Driven Approaches to Forecast Fluctuations in Groundwater Table. Water, 16(11), 1500. https://doi.org/10.3390/w16111500