Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. IoT platform
2.2.1. General Architecture
2.2.2. Layer 1 (IoT Devices)
- An ESP32-based development board (DEVKIT V1).
- Four parallel connected 2600 mAh, 3.7 V, rechargeable 18,650 lithium-ion batteries, which are charged by a 3.5 Watt/6 V solar panel. A charging module with step up boost converter (3.7 V/9 V/5 V—2 A) controls the battery charge and supplies the microcontroller and SDI sensor with 5 V/2 A power.
- A power switch using a logic level Mosfet for cutting off the power supply to the SDI-12 sensor during the sleep period.
- A voltage divider for measuring the battery level by ESP32.
- A SIM800L GPRS module equipped with a sim card (1nce IoT) which is controlled by the microcontroller unit and supplied with power from 3.7 V lithium batteries. This module establishes communication with the mobile network by means of a GSM/GPRS protocol, sending the data to layer 2.
- A 171 × 121 × 55 mm project box (G313MF, GAINTA).
- The wiring of the boards is shown in the diagram below (Figure 3).
2.2.3. Layer 2 (IoT Backend)
- Ubuntu server (a version of the Ubuntu operating system designed and engineered to run on servers);
- MySQL relational database system;
- Eclipse Mosquitto™ MQTT broker;
- Node-RED, a visual programming tool that allows you to connect different web services and devices;
- Things Board community edition, an open-source IoT platform for data collection, processing, visualization and device management.
2.2.4. Layer 3 (Things Board frontend)
2.3. Irrigation Model
2.4. Irrigation Strategies and Olive Fruit Fly Alarm Rules
3. Implementation and Discussion
3.1. Device Implementation (IoT-Based Monitoring System)
3.2. User Interface and Scheduled Alarms for Irrigation and Pest Control
- The latest telemetry for soil volumetric water content, electrical conductivity and temperature;
- Historical elements of the data from the node located in the specific plot;
- The characteristics of the plot (soil type, irrigation system, area, tree density and tree age);
- The boundaries of the plot on a map with a satellite background;
- A table with the irrigation alarms;
- The lowest soil moisture threshold value with the option to be modified by the user;
- The recommended amount of irrigation water per tree at a given moment.
3.3. Benefits of the Proposed System—Steps for Further Improvements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO 2020. AQUASTAT Core Database. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html (accessed on 24 March 2023).
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Psarras, G.; Morianou, G.; Pisinaras, V.; Koubouris, G.; Digalaki, N.; Malliaraki, S.; Aggelaki, K.; Motakis, G.; Arampatzis, G. Good Agricultural Practices Related to Water and Soil as a Means of Adaptation of Mediterranean Olive Growing to Extreme Climate-Water Conditions. Sustainability 2022, 14, 3673. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 2: Irrigation Management. Water 2022, 14, 1157. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit Irrigation as an On-Farm Strategy to Maximize Crop Water Productivity in Dry Areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of Research Progress on Soil Moisture Sensor Technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Garcia, L.; Jimenez, J.M. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture. Sensors 2021, 21, 7243. [Google Scholar] [CrossRef]
- Nolz, R.; Kammerer, G.; Cepuder, P. Calibrating Soil Water Potential Sensors Integrated into a Wireless Monitoring Network. Agric. Water Manag. 2013, 116, 12–20. [Google Scholar] [CrossRef]
- Yu, X.; Wu, P.; Han, W.; Zhang, Z. A Survey on Wireless Sensor Network Infrastructure for Agriculture. Comput. Stand. Interfaces 2013, 35, 59–64. [Google Scholar] [CrossRef]
- Singh, M.K.; Amin, S.I.; Imam, S.A.; Sachan, V.K.; Choudhary, A. A Survey of Wireless Sensor Network and its Types. In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 326–330. [Google Scholar] [CrossRef]
- Tiwari, S.; Rosak-Szyrocka, J.; Żywiołek, J. Internet of Things as a Sustainable Energy Management Solution at Tourism Destinations in India. Energies 2022, 15, 2433. [Google Scholar] [CrossRef]
- Sinduja, R.M.; Sowmya, S. Monitoring of Rice Crops Using GPRS and Wireless Sensors for Efficient Use of Water and Electricity. Int. J. Appl. Innov. Eng. Manag. 2013, 2, 269–274. [Google Scholar]
- Muñoz, M.; Gil, J.; Roca, L.; Rodríguez, F.; Berenguel, M. An IoT Architecture for Water Resource Management in Agroindustrial Environments: A Case Study in Almería (Spain). Sensors 2020, 20, 596. [Google Scholar] [CrossRef]
- Onoufriou, G.; Bickerton, R.; Pearson, S.; Leontidis, G. Nemesyst: A Hybrid Parallelism Deep Learning-Based Framework Applied for Internet of Things Enabled Food Retailing Refrigeration Systems. Comput. Ind. 2019, 113, 103133. [Google Scholar] [CrossRef]
- Lutz, É.; Coradi, P.C. Applications of New Technologies for Monitoring and Predicting Grains Quality Stored: Sensors, Internet of Things, and Artificial Intelligence. Measurement 2022, 188, 110609. [Google Scholar] [CrossRef]
- Al Rasyid, M.U.H.; Mubarrok, M.H.; Nur Hasim, J.A. Implementation of Environmental Monitoring Based on KAA IoT Platform. Bull. Electr. Eng. Inform. 2020, 9, 2578–2587. [Google Scholar] [CrossRef]
- Parida, D.; Behera, A.; Naik, J.K.; Pattanaik, S.; Nanda, R.S. Real-Time Environment Monitoring System Using ESP8266 and ThingSpeak on Internet of Things Platform. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 225–229. [Google Scholar] [CrossRef]
- Luis Bustamante, A.; Patricio, M.; Molina, J. Thinger. Io: An Open Source Platform for Deploying Data Fusion Applications in IoT Environments. Sensors 2019, 19, 1044. [Google Scholar] [CrossRef]
- Che Soh, Z.H.; Shafie, M.S.; Shafie, M.A.; Noraini Sulaiman, S.; Ibrahim, M.N.; Afzal Che Abdullah, S. IoT Water Consumption Monitoring & Alert System. In Proceedings of the 2018 International Conference on Electrical Engineering and Informatics (ICELTICs) (44501), Banda Aceh, Indonesia, 19–20 September 2018; IEEE: New York, NY, USA, 2018; pp. 168–172. [Google Scholar] [CrossRef]
- Puig, F.; Rodríguez Díaz, J.A.; Soriano, M.A. Development of a Low-Cost Open-Source Platform for Smart Irrigation Systems. Agronomy 2022, 12, 2909. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2021, 21, 17539–17547. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Anyfanti, I.; Karatzas, G.P.; Dokou, Z. An Integrated Method for Assessing Drought Prone Areas—Water Efficiency Practices for a Climate Resilient Mediterranean Agriculture. Sci. Total Environ. 2018, 625, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- SDI-12. A Serial-Digital Interface Standard for Microprocessor-Based Sensors, Version 1.4. 2021. Available online: http://www.sdi-12.org/current_specification/SDI-12_version-1_4-Jan-30-2021.pdf (accessed on 6 February 2023).
- Borek, Ł.; Bogdał, A.; Kowalik, T. Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study. Land 2021, 10, 9. [Google Scholar] [CrossRef]
- Nasta, P.; Szabó, B.; Romano, N. Evaluation of Pedotransfer Functions for Predicting Soil Hydraulic Properties: A Voyage from Regional to Field Scales across Europe. J. Hydrol. Reg. Stud. 2021, 37, 100903. [Google Scholar] [CrossRef]
- Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating Generalized Soil-Water Characteristics from Texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Arampatzis, G.; Hatzigiannakis, E.; Pisinaras, V.; Kourgialas, N.; Psarras, G.; Kinigopoulou, V.; Panagopoulos, A.; Koubouris, G. Soil Water Content and Olive Tree Yield Responses to Soil Management, Irrigation, and Precipitation in a Hilly Mediterranean Area. J. Water Clim. Change 2018, 9, 672–678. [Google Scholar] [CrossRef]
- Montanaro, G.; Doupis, G.; Kourgialas, N.; Markakis, E.; Kavroulakis, N.; Psarras, G.; Koubouris, G.; Dichio, B.; Nuzzo, V. Management Options Influence Seasonal CO2 Soil Emissions in Mediterranean Olive Ecosystems. Eur. J. Agron. 2023, 146, 126815. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Koubouris, G.C.; Dokou, Z. Optimal Irrigation Planning for Addressing Current or Future Water Scarcity in Mediterranean Tree Crops. Sci. Total Environ. 2019, 654, 616–632. [Google Scholar] [CrossRef]
- Tietel, Z.; Dag, A.; Yermiyahu, U.; Zipori, I.; Beiersdorf, I.; Krispin, S.; Ben-Gal, A. Irrigation-Induced Salinity Affects Olive Oil Quality and Health-Promoting Properties: Irrigation-Induced Salinity Affects Olive Oil Quality. J. Sci. Food Agric. 2019, 99, 1180–1189. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Dokou, Z.; Karatzas, G.P.; Panagopoulos, G.; Soupios, P.; Vafidis, A.; Manoutsoglou, E.; Schafmeister, M. Saltwater Intrusion in an Irrigated Agricultural Area: Combining Density-Dependent Modeling and Geophysical Methods. Environ. Earth Sci. 2016, 75, 15. [Google Scholar] [CrossRef]
- Al-Absi, K.; Qrunfleh, M.; Abu-Sharar, T. Mechanism of Salt Tolerance of Two Olive Olea Europaea, L. Cultivars as Related to Electrolyte Concentration and Toxicity. In Proceedings of the XXVI International Horticultural Congress: Environmental Stress and Horticulture Crops, Toronto, ON, Canada, 11–17 August 2002; Volume 618, pp. 281–290. [Google Scholar]
- Bernstein, L.; Bernstein, L. Salt Tolerance of Fruit Crops. 1965. Available online: https://doi.org/10.22004/AG.ECON.308959 (accessed on 14 February 2023).
- Baradaran Motie, J.; Aghkhani, M.H.; Rohani, A.; Lakzian, A. A Soft-Computing Approach to Estimate Soil Electrical Conductivity. Biosyst. Eng. 2021, 205, 105–120. [Google Scholar] [CrossRef]
- Nanos, G. Teaching Notes for the Course of Specific Pomology; School of Agricultural Sciences, University of Thessaly: Volos, Greece, 2019; p. 59. (In Greek) [Google Scholar]
- Chartzoulakis, K.S. Salinity and Olive: Growth, Salt Tolerance, Photosynthesis and Yield. Agric. Water Manag. 2005, 78, 108–121. [Google Scholar] [CrossRef]
- Pappas, M.L.; Broufas, G.D.; Koufali, N.; Pieri, P.; Koveos, D.S. Effect of Heat Stress on Survival and Reproduction of the Olive Fruit Fly Bactocera (Dacus) Oleae: Heat Stress Effect on Bactocera Oleae. J. Appl. Entomol. 2011, 135, 359–366. [Google Scholar] [CrossRef]
- Neuenschwander, P.; Michelakis, S. Determination of the Lower Thermal Thresholds and Day-Degree Requirements for Eggs and Larvae of Dacus Oleae (Gmel.) (Diptera: Tephritidae) under Field Conditions in Crete, Greece. 1979. Available online: https://doi.org/10.5169/SEALS-401908 (accessed on 22 February 2023).
- Romano, E.; Bergonzoli, S.; Bisaglia, C.; Picchio, R.; Scarfone, A. The Correlation between Proximal and Remote Sensing Methods for Monitoring Soil Water Content in Agricultural Applications. Electronics 2022, 12, 127. [Google Scholar] [CrossRef]
- METER Group, Inc. USA. TEROS-12-Integrator-Guide. 2023. Available online: http://publications.metergroup.com/Integrator%20Guide/18224%20TEROS%2011-12%20Integrator%20Guide.pdf (accessed on 26 March 2023).
Parcel and Sensor Name | Site Location and Mean Altitude (m) | Texture Class | Organic Matter (%) | Bulk Density (g.cm−3) | Rocks (% w/w) | CaCO3 (%) | pH | Mean Rainfall (mm/Year) Reference Period (2010–2022) | Mean Temperature (°C) Reference Period (2010–2022) | Irrigation ECw (dS/m) |
---|---|---|---|---|---|---|---|---|---|---|
(A) S 1 | Coastal area Mean altitude (12 m) | Loam (Medium fine) | 2.59 | 1.35 | 3.31 | 3.2 | 8.1 | 435.6 (SD: 32) | 19.4 (SD:1.3) | 3.77 |
(B) S 2 | Clay loam (medium) | 5.42 | 1.42 | 11.61 | 1.7 | 7.5 | ||||
(C) S 3 | Sandy clay loam (medium) | 5.13 | 1.78 | 13.47 | 4 | 7.9 | ||||
(D) S 4 | Loam (Medium fine) | 8.80 | 1.42 | 12.09 | 2.5 | 7.6 | ||||
(E) S 5 | Inland area Mean altitude (260 m) | Sandy loam (coarse) | 1.30 | 1.95 | 32.52 | 0 | 6.9 | 680.2 (SD: 45) | 18.1 (SD: 1.4) | 0.58 |
(F) S 6 | Sandy clay loam (medium) | 1.50 | 1.76 | 16.4 | 0 | 7.1 | ||||
(G) S 7 | Clay loam (medium) | 2.68 | 1.78 | 9.79 | 0 | 7.1 | ||||
(H) S 8 | Sandy loam (coarse) | 0.63 | 1.85 | 26.35 | 1.4 | 8.1 |
Parameter | Range | Resolution | Accuracy |
---|---|---|---|
VWC | 0.00–0.62 m3/m3 | 0.001 m3/m3 | ±0.03 m3/m3 |
Temperature | −40 to +60 °C | 0.1 °C | ±1 °C |
Bulk Electrical Conductivity | 0–20 dS/m (bulk) | 0.001 dS/m | ±5% dS/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzerakis, K.; Psarras, G.; Kourgialas, N.N. Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels. Water 2023, 15, 1739. https://doi.org/10.3390/w15091739
Tzerakis K, Psarras G, Kourgialas NN. Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels. Water. 2023; 15(9):1739. https://doi.org/10.3390/w15091739
Chicago/Turabian StyleTzerakis, Konstantinos, Georgios Psarras, and Nektarios N. Kourgialas. 2023. "Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels" Water 15, no. 9: 1739. https://doi.org/10.3390/w15091739
APA StyleTzerakis, K., Psarras, G., & Kourgialas, N. N. (2023). Developing an Open-Source IoT Platform for Optimal Irrigation Scheduling and Decision-Making: Implementation at Olive Grove Parcels. Water, 15(9), 1739. https://doi.org/10.3390/w15091739