Modeling Hydrological Responses to Land Use Change in Sejnane Watershed, Northern Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model Description and Performance Evaluation
2.3. Methodology
2.3.1. Model Setup and Input Data
2.3.2. Sensitivity Analysis, Calibration, and Validation
2.3.3. Land Use Assessment
2.3.4. Methodological Framework
3. Results and Discussion
3.1. Land Use Change Detection in the Study Area
3.2. Hydrological Modeling
3.2.1. Sensitivity Analysis
3.2.2. SWAT Model Calibration and Validation
3.2.3. Hydrological Response to Land Use Change
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.-J.; Qin, D.-H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Zhang, M.; Stodolak, R.; Xia, J. The Impact of the Changes in Climate, Land Use and Direct Human Activity on the Discharge in Qingshui River Basin, China. Water 2021, 13, 3147. [Google Scholar] [CrossRef]
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N.; et al. Current European flood-rich period exceptional compared with past 500 years. Nature 2020, 583, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- Sánchez-García, C.; Francos, M. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geogr. Sustain. 2022, 3, 232–236. [Google Scholar] [CrossRef]
- Stonestrom, D.A.; Scanlon, B.R.; Zhang, L. Introduction to special section on Impacts of Land Use Change on Water Resources. Water Resour. Res. 2009, 45, W00A00. [Google Scholar] [CrossRef]
- Wagner, P.D.; Bhallamudi, S.M.; Narasimhan, B.; Kantakumar, L.N.; Sudheer, K.; Kumar, S.; Schneider, K.; Fiener, P. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Sci. Total Environ. 2016, 539, 153–164. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Sci. Total Environ. 2018, 644, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin. Water 2018, 10, 814. [Google Scholar] [CrossRef]
- Hachemaoui, A.; Elouissi, A.; Benzater, B.; Fellah, S. Assessment of the hydrological impact of land use/cover changes in a semi-arid basin using the SWAT model (case of the Oued Saïda basin in western Algeria). Model. Earth Syst. Environ. 2022, 8, 5611–5624. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environ. Manag. 2016, 57, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Gebremicael, T.; Mohamed, Y.; Van der Zaag, P. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Sci. Total Environ. 2019, 660, 1155–1167. [Google Scholar] [CrossRef]
- Torabi Haghighi, A.; Darabi, H.; Shahedi, K.; Solaimani, K.; Kløve, B. A Scenario-Based Approach for Assessing the Hydrological Impacts of Land Use and Climate Change in the Marboreh Watershed, Iran. Environ. Model. Assess. 2020, 25, 41–57. [Google Scholar] [CrossRef]
- Mosbahi, M.; Benabdallah, S. Assessment of land management practices on soil erosion using SWAT model in a Tunisian semi-arid catchment. J. Soils Sediments 2020, 20, 1129–1139. [Google Scholar] [CrossRef]
- Guzha, A.; Rufino, M.; Okoth, S.; Jacobs, S.; Nóbrega, R. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B. Computer Models of Watershed Hydrology. Singh, V.P., Ed.; Water Resources Publications: Englewood, NJ, USA, 1995; pp. 809–846. [Google Scholar]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European hydrological system—Système Hydrologique Européen, “SHE”, 1: History and philosophy of a physically based distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Hurkmans, R.T.W.L.; Terink, W.; Uijlenhoet, R.; Moors, E.J.; Troch, P.A.; Verburg, P.H. Effects of land use changes on streamflow generation in the Rhine basin. Water Resour. Res. 2009, 45, W06405. [Google Scholar] [CrossRef]
- Wijesekara, G.N.; Farjad, B.; Gupta, A.; Qiao, Y.; Delaney, P.; Marceau, D.J. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada. Environ. Manag. 2014, 53, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Holden, J.; Kirkby, M. A distributed TOPMODEL for modelling impacts of land-cover change on river flow in upland peatland catchments. Hydrol. Process. 2015, 29, 2867–2879. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Yang, L.; Wen, X.; Si, J.; Zou, S. Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China. Sustainability 2017, 9, 1278. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Boongaling, C.G.K.; Faustino-Eslava, D.V.; Lansigan, F.P. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy 2018, 72, 116–128. [Google Scholar] [CrossRef]
- Sertel, E.; Imamoglu, M.Z.; Cuceloglu, G.; Erturk, A. Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-latitude Water Supply Catchment. Water 2019, 11, 1075. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585, 124822. [Google Scholar] [CrossRef]
- Mangi, H.O.; Onywere, S.M.; Kitur, E.C.; Lalika, M.C.; Chilagane, N.A. Hydrological response to land use and land cover change on the slopes of Kilimanjaro and Meru Mountains. Ecohydrol. Hydrobiol. 2022, 22, 609–626. [Google Scholar] [CrossRef]
- United Nations Environment Programme World Conservation Monitoring Centre. Ichkeul National Park, Tunisia. 2008. Available online: http://www.eoearth.org/view/article/153760/ (accessed on 26 June 2013).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool (SWAT), Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report; Blackland Research Center, Grassland, Soil and Water Research Laboratory: Temple, TX, USA, 2011; pp. 406–618. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Cartes agricoles De La Tunisie; Ministry of Agriculture: Tunis, Tunisia, 2002. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Aouissi, J.; Benabdallah, S.; Lili Chabaâne, Z.; Cudennec, C. Valuing scarce observation of rainfall variability with flexible semi-distributed hydrological modelling—Mountainous Mediterranean context. Sci. Total Environ. 2018, 643, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Mosbahi, M.; Benabdallah, S.; Boussema, M.R. Sensitivity analysis of a GIS-based model: A case study of a large semi-arid catchment. Earth Sci. Inform. 2015, 8, 569–581. [Google Scholar] [CrossRef]
- Ben Khelifa, W.; Strohmeier, S.; Benabdallah, S.; Habaieb, H. Evaluation of bench terracing model parameters transferability for runoff and sediment yield on catchment modelling. J. Afr. Earth Sci. 2021, 178, 104177. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- El Ghoul, I.; Sellami, H.; Khlifi, S.; Vanclooster, M. Impact of land use land cover changes on flow uncertainty in Siliana watershed of northwestern Tunisia. Catena 2023, 220 Pt B, 106733. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 17. [Google Scholar] [CrossRef]
Value | LULC Classes | SWAT Code | Area (%) |
---|---|---|---|
1 | Forest | FRSE | 24.95 |
2 3 | Scrubland | GRAR | 13.67 |
3 4 | Grassland | PAST | 3.54 |
4 | Forage crop | HAY | 10.51 |
5 6 | Vegetable crops | AGRL | 14.07 |
6 | Olives | OLIV | 22.04 |
7 | Bare land | BARR | 7.92 |
8 | Urban land | URML | 1.49 |
9 | Water bodies | WATR | 1.8 |
No | Satellite | Aquisition Date | Used Band | Spatial Resolution (m) | Produced Landuse Map |
---|---|---|---|---|---|
1 | LANDSAT5 | 4 September 1984 | Band 1 Band 2 Band 3 Band 4 Band 5 | 30 | 1985 |
2 3 | 26 January 1985 | 30 | |||
3 4 | 21 July 1985 | 30 | |||
4 | 31 March 1985 | 30 | |||
5 6 | 16 September 2000 | 30 | 2001 | ||
6 | 5 December 2000 | 30 | |||
7 | 7 March 2001 | 30 | |||
8 | 15 June 2001 | 30 | |||
9 | SENTINEL2A | 9 November 2020 | Band 2 Band 3 Band 4 Band 8 | 10 | 2021 |
10 | SENTINEL2A | 12 January 2021 | 10 | ||
11 | SENTINEL2A | 15 March 2021 | 10 | ||
12 | SENTINEL2A | 31 August 2021 | 10 |
Value | LULC Classes | Field Used Observation Data for Classification | Field Used Observation Data for Validation | Precision (%) |
---|---|---|---|---|
1 | Forest | 35 | 30 | 70 |
2 3 | Scrubland | 24 | 17 | 29.4 |
3 4 | Grassland | 20 | 10 | 50 |
4 | Forage crop | 20 | 9 | 100 |
5 6 | Vegetable crops | 36 | 22 | 55 |
6 | Olive trees | 45 | 35 | 48.5 |
7 | Bare land | 20 | 8 | 100 |
8 | Urban land | 46 | 42 | 88.1 |
9 | Water bodies | 25 | 18 | 100 |
KAPPA index | 0.82 |
Value | LULC Classes | Field Used Observation Data for Classification | % Identification for 1985 Image | % of Identification for 2001 Image |
---|---|---|---|---|
1 | Forest | 95 | 100 | 87 |
2 | Scrubland | 70 | 80 | 79.1 |
3 | ||||
3 | Grassland | 75 | 75 | 85 |
4 | ||||
4 | Forage crop | 70 | 83 | 70 |
5 | Vegetable crops | - | 70 | - |
6 | ||||
6 | Olive trees | - | - | - |
7 | Bare land | 80 | 82 | 90 |
8 | Urban land | 100 | 100 | 100 |
9 | Water bodies | - | 100 | 20 |
Kappa index | 81.6 | 86.25 |
Land Use Yearly Map | 1985 | 2001 | 2021 | Change 1985–2001 | Change 2001–2021 | Change 1985–2021 | |||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (%) | Area (%) | Area (%) | |
Forest | 99.33 | 27.16 | 97.47 | 26.68 | 91.19 | 24.95 | −0.48 | −1.73 | −2.21 |
Scrubland | 66.39 | 18.15 | 109.00 | 29.85 | 49.98 | 13.67 | 11.7 | −16.18 | −4.48 |
Grassland | 105.37 | 28.81 | 39.14 | 10.72 | 12.95 | 3.54 | −18.09 | −7.18 | −25.27 |
Forage | 67.85 | 18.55 | 81.15 | 22.22 | 38.41 | 10.51 | 3.67 | −11.71 | −8.04 |
Vegetable crops | - | - | 21.68 | 5.94 | 51.44 | 14.07 | 5.94 | 8.13 | 14.07 |
Olives | - | - | - | - | 80.58 | 22.04 | - | 22.04 | 22.04 |
Bare land | 26.62 | 7.28 | 6.79 | 1.86 | 28.96 | 7.92 | −5.42 | 6.06 | 0.64 |
Urban area | 0.18 | 0.05 | 1.07 | 0.29 | 6.51 | 1.49 | 0.24 | 1.2 | 1.44 |
Water bodies | - | - | 8.9 | 2.4 | 5.5 | 1.8 | 2.4 | −0.6 | 1.8 |
Parameters | Parameters Description | Parameters Range | Fitted Value | p-Value | t-Stat |
---|---|---|---|---|---|
R_CN2 | SCS runoff curve number for moisture condition | −0.3–0.3 | 0.11 | 0.00 | 15.36 |
V_ALPHA- BF | Base flow alpha factor (days) | 0–1 | 0.45 | 0.00 | 12.25 |
V_CH-K2 | Channel effective hydraulic conductivity | −0.1–550. | 12.96 | 0.00 | −5.67 |
V-GW_DELAY | Groundwater delay (days) | 200–500 | 310.6 | 0.01 | 2.55 |
V_SLSUBBSN | Average length of the slope (m) | 30–111 | 31.31 | 0.02 | −2.17 |
V_RCHRG_DP | Deep aquifer percolation | 0–1 | 0.64 | 0.19 | −1.13 |
V_SURLAG | Surface runoff lag time (mm) | 0.05–15 | 2.98 | 0.22 | −1.03 |
V_ESCO | Soil evaporation compensation factor | 0–1 | 0.90 | 0.27 | −1.00 |
Period | NSE | R2 | PBIAS (%) |
---|---|---|---|
Calibration period (1997−2010) 3 | 0.78 | 0.85 | −6.6 |
Validation period (2011−2019) 4 | 0.70 | 0.81 | −29.2 |
Hydrological Parameters (mm) | Land Use | Detection of Change (%) | ||||
---|---|---|---|---|---|---|
Lu_1985 | Lu_2001 | LU_2021 | Change 1985–2001 | Change 2001–2021 | Change 1985–2021 | |
Surface runoff (SurQ) (SUR_Q) | 236.6 | 194.7 | 273.2 | −17.7 | 40.3 | 15.5 |
Water yield (WYLD) | 534.3 | 510.3 | 538.9 | −4.5 | 5.6 | 0.9 |
Evapotranspiration (ET) | 387.6 | 427.7 | 394.7 | 10.3 | −7.7 | 1.8 |
Percolation (PERC) | 163.7 | 173.9 | 141.1 | 6.2 | −18.9 | −13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosbahi, M.; Kassouk, Z.; Benabdallah, S.; Aouissi, J.; Arbi, R.; Mrad, M.; Blake, R.; Norouzi, H.; Béjaoui, B. Modeling Hydrological Responses to Land Use Change in Sejnane Watershed, Northern Tunisia. Water 2023, 15, 1737. https://doi.org/10.3390/w15091737
Mosbahi M, Kassouk Z, Benabdallah S, Aouissi J, Arbi R, Mrad M, Blake R, Norouzi H, Béjaoui B. Modeling Hydrological Responses to Land Use Change in Sejnane Watershed, Northern Tunisia. Water. 2023; 15(9):1737. https://doi.org/10.3390/w15091737
Chicago/Turabian StyleMosbahi, Manel, Zeineb Kassouk, Sihem Benabdallah, Jalel Aouissi, Rihab Arbi, Mouna Mrad, Reginald Blake, Hamidreza Norouzi, and Béchir Béjaoui. 2023. "Modeling Hydrological Responses to Land Use Change in Sejnane Watershed, Northern Tunisia" Water 15, no. 9: 1737. https://doi.org/10.3390/w15091737