# Study on Characteristics of Pipeline Hydraulic Transportation of Coarse Particles Based on LBM-DEM Method

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Lattice Boltzmann Method

#### 2.2. Discrete Element Method

#### 2.3. Immersed Moving Boundary Method

#### 2.4. Calculation Process

## 3. Method Validation

#### 3.1. Pipeline Hydraulic Transportation Test

#### 3.2. Parameters of Numerical Simulation

^{−5}s. The pipeline diameter is 0.1 m, which is converted into a lattice unit of 100. If the simulation time is 1.0 s, it transfers to a lattice unit of 100,000.

#### 3.3. Comparison of Experimental and Simulated Results

## 4. Influence of Different Initial Conditions on Coarse Particle Pipeline Movement

#### 4.1. Influence of Pipeline Flow Velocity on Motion Form of Coarse Particles

#### 4.2. Influence of Particle Diameter on Motion Form of Coarse Particles

#### 4.3. Influence of Pipeline Flow Velocity and Particle Diameter on Coarse Particle Velocity

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Vlasák, P.; Chára, Z.; Krupička, J.; Konfršt, J. Experimental investigation of coarse particles-water mixture flow in horizontal and inclined pipes. J. Hydrol. Hydromech.
**2014**, 62, 241–247. [Google Scholar] [CrossRef] - Matoušek, V.; Krupička, J.; Pěník, V. Distribution of medium-to-coarse glass beads in slurry pipe flow: Evaluation of measured concentration profiles. Part. Sci. Technol.
**2014**, 32, 186–196. [Google Scholar] [CrossRef] - Zouaoui, S.; Djebouri, H.; Mohammedi, K.; Khelladi, S.; Aider, A.A. Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe. Chin. J. Chem. Eng.
**2016**, 24, 317–322. [Google Scholar] [CrossRef] - Alihosseini, M.; Thamsen, P.U. Analysis of sediment transport in sewer pipes using a coupled CFD-DEM model and experimental work. Urban Water J.
**2016**, 16, 259–268. [Google Scholar] [CrossRef] - Kaushal, D.R.; Tomita, Y.; Dighade, R.R. Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. Powder Technol.
**2002**, 125, 89–101. [Google Scholar] [CrossRef] - Osra, F.A. A laboratory study of solid-water mixture flow head losses through pipelines at different slopes and solid concentrations. S. Afr. J. Chem. Eng.
**2020**, 33, 29–34. [Google Scholar] [CrossRef] - Vlasak, P.; Kysela, B.; Chara, Z. Flow Structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech.
**2012**, 60, 115–124. [Google Scholar] [CrossRef] - Spelay, R.B.; Gillies, R.G.; Hashemi, S.A.; Sanders, R.S. Effect of pipe inclination on the deposition velocity of settling slurries. Can. J. Chem. Eng.
**2016**, 94, 1032–1039. [Google Scholar] [CrossRef] - Singh, M.K.; Kumar, S.; Ratha, D.; Kaur, H. Design of slurry transportation pipeline for the flow of muti-particulate coal ash suspension. Int. J. Hydrog. Energy
**2017**, 42, 19135–19138. [Google Scholar] [CrossRef] - Rani, R.; Jain, M.K. Effect of bottom ash at different ratios on hydraulic transportation of fly ash during mine fill. Powder Technol.
**2017**, 315, 309–317. [Google Scholar] [CrossRef] - Das, S.N.; Biswal, S.K.; Mohapatra, R.K. Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation. Mater. Today Proc.
**2020**, 33, 5093–5097. [Google Scholar] [CrossRef] - Rao, N.D.; Thatoi, D.N.; Biswal, S.K. Rheological study and numerical analysis of high concentration iron ore slurry pipeline transportation. Mater. Today Proc.
**2020**, 22, 3197–3202. [Google Scholar] - Xiong, T.; Zhang, X.; Miedema, S.A.; Chen, X. Study of the characteristics of the flow regimes and dynamics of coarse particles in pipeline transportation. Powder Technol.
**2019**, 347, 148–158. [Google Scholar] - Chen, Q.; Xiong, T.; Zhang, X.; Jiang, P. Study of the hydraulic transport of non-spherical particles in a pipeline based on the CFD-DEM. Eng. Appl. Comput. Fluid Mech.
**2020**, 14, 53–69. [Google Scholar] [CrossRef] - Yang, D.; Xia, Y.; Wu, D.; Chen, P.; Zeng, G.; Zhao, X. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum. Tunn. Undergr. Space Technol.
**2018**, 71, 223–230. [Google Scholar] [CrossRef] - Akbarzadeh, V.; Hrymak, A.N. Coupled CFD-DEM of particle-laden flows in a turning flow with a moving wall. Comput. Chem. Eng.
**2016**, 86, 184–191. [Google Scholar] [CrossRef] - Guo, Y.; Yu, X.B. Comparison of the implementation of three common types of coupled CFD-DEM model for simulating soil surface erosion. Int. J. Multiph. Flow
**2017**, 91, 89–100. [Google Scholar] [CrossRef] - Zhou, M.; Wang, S.; Kuang, S.; Luo, K.; Fan, J.; Yu, A. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technol.
**2019**, 354, 893–905. [Google Scholar] [CrossRef] - Januário, J.R.; Maia, C.B. CFD-DEM Simulation to Predict the Critical Velocity of Slurry Flows. J. Appl. Fluid Mech.
**2020**, 13, 161–168. [Google Scholar] [CrossRef] - Akhshik, S.; Behzad, M.; Rajabi, M. CFD-DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior. J. Pet. Sci. Eng.
**2015**, 127, 229–244. [Google Scholar] [CrossRef] - Akhshik, S.; Behzad, M.; Rajabi, M. CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape. Particuology
**2016**, 25, 72–82. [Google Scholar] [CrossRef] - Wee, S.K.; Yap, Y.J. CFD study of sand erosion in pipeline. J. Pet. Sci. Eng.
**2019**, 176, 269–278. [Google Scholar] [CrossRef] - Zolfagharnasab, M.H.; Salimi, M.; Zolfagharnasab, H.; Alimoradi, H.; Shams, M.; Aghanajafi, C. A novel numerical investigation of erosion wear over various 90-degree elbow duct sections. Powder Technol.
**2021**, 380, 1–17. [Google Scholar] [CrossRef] - Varga, M.; Goniva, C.; Adam, K.; Badisch, E. Combined experimental and numerical approach for wear prediction in feed pipes. Tribol. Int.
**2013**, 65, 200–206. [Google Scholar] [CrossRef] - Cheng, J.; Zhang, N.; Li, Z.; Dou, Y.; Cao, Y. Erosion failure of horizontal pipe reducing Wall in power-law fluid containing particles via CFD-DEM coupling method. J. Fail. Anal. Prev.
**2017**, 17, 1067–1080. [Google Scholar] [CrossRef] - Chen, J.; Wang, Y.; Li, X.; He, R.; Han, S.; Chen, Y. Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method. Powder Technol.
**2015**, 275, 182–187. [Google Scholar] [CrossRef] - Tao, J.; Tao, H. Factors affecting piping erosion resistance: Revisited with a numerical modeling approach. Int. J. Geomech.
**2017**, 17, 04017097. [Google Scholar] [CrossRef] - Cui, X.; Li, J.; Chan, A.; Chapman, D. Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe. Powder Technol.
**2014**, 254, 299–306. [Google Scholar] [CrossRef] - Song, S.; Wang, S.; Le-Clech, P.; Shen, Y. LBM-DEM simulation of particle deposition and resuspension of pre-deposited dynamic membrane. Powder Technol.
**2022**, 407, 117637. [Google Scholar] [CrossRef] - Yang, G.C.; Jing, L.; Kwok, C.Y.; Sobral, Y.D. A comprehensive parametric study of LBM-DEM for immersed granular flows. Comput. Geotech.
**2019**, 114, 103100. [Google Scholar] [CrossRef] - Tran, D.K.; Prime, N.; Froiio, F.; Callari, C.; Vincens, E. Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling. Eur. J. Environ. Civ. Eng.
**2017**, 21, 960–987. [Google Scholar] [CrossRef] - Zhou, W.; Ma, Q.; Ma, G.; Cao, X.; Cheng, Y. Microscopic investigation of internal erosion in binary mixtures via the coupled LBM-DEM method. Powder Technol.
**2020**, 376, 31–41. [Google Scholar] [CrossRef] - Munjiza, A.; Andrews, K.R.F. NBS contact detection algorithm for bodies of similar size. Int. J. Numer. Methods Eng.
**1998**, 43, 131–149. [Google Scholar] [CrossRef] - Noble, D.R.; Torczynski, J.R. A lattice-Boltzmann method for partially saturated computational cells. Int. J. Mod. Phys. C
**1998**, 9, 1189–1201. [Google Scholar] [CrossRef] - Yu, H.; Girimaji, S.S.; Luo, L.S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J. Comput. Phys.
**2005**, 209, 599–616. [Google Scholar] [CrossRef] - Feng, Y.T.; Han, K.; Owen, D.R.J. Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment. Int. J. Numer. Methods Eng.
**2010**, 81, 229–245. [Google Scholar] [CrossRef] - Nikuradse, J. Laws of Flow in Rough Pipes; National Advisory Committee for Aeronautics, Technical Memorandum 1292 (No. NACA-TM-1292): Washington, DC, USA, 1950; pp. 1–62. [Google Scholar]
- Fei, X.J. Hydraulics of Slurry and Granular Material Transport, 1st ed.; Tsinghua University Press: Beijing, China, 1994; pp. 140–187. [Google Scholar]

**Figure 6.**Comparison of experimental and simulation results. (

**a**) Experimental results. (

**b**) Simulation results.

**Figure 12.**Change of the particle velocity with different particle diameters. (

**a**) Pipeline flow velocity 1.0 m/s. (

**b**) Pipeline flow velocity 1.5 m/s.

Parameter | Value | Parameter | Value |
---|---|---|---|

Particle density/(kg/m^{3}) | 2650 | Fluid density/(kg/m^{3}) | 1000 |

Friction coefficient | 0.8 | Kinematic viscosity/(m^{2}/s) | 1.0 × 10^{−6} |

Particle normal stiffness/(N/m) | 2.0 × 10^{7} | Particle tangential stiffness/(N/m) | 2.0 × 10^{7} |

Coefficient of restitution | 0.6 | Damping coefficient | 0.51 |

1.0 m/s | 1.5 m/s | 2.0 m/s | 2.5 m/s | 3.0 m/s | |
---|---|---|---|---|---|

10 mm | 0 | 1 | 1 | 2 | 3 |

12 mm | 0 | 1 | 1 | 2 | 3 |

14 mm | 0 | 0 | 1 | 2 | 3 |

16 mm | 0 | 0 | 1 | 1 | 2 |

18 mm | 0 | 0 | 1 | 1 | 2 |

20 mm | 0 | 0 | 0 | 1 | 1 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wu, Y.; Niu, W.; Zhao, T.; Li, Z.
Study on Characteristics of Pipeline Hydraulic Transportation of Coarse Particles Based on LBM-DEM Method. *Water* **2023**, *15*, 1717.
https://doi.org/10.3390/w15091717

**AMA Style**

Wu Y, Niu W, Zhao T, Li Z.
Study on Characteristics of Pipeline Hydraulic Transportation of Coarse Particles Based on LBM-DEM Method. *Water*. 2023; 15(9):1717.
https://doi.org/10.3390/w15091717

**Chicago/Turabian Style**

Wu, Yuxi, Weijing Niu, Tingting Zhao, and Zhiqiang Li.
2023. "Study on Characteristics of Pipeline Hydraulic Transportation of Coarse Particles Based on LBM-DEM Method" *Water* 15, no. 9: 1717.
https://doi.org/10.3390/w15091717