Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods of Water Composition Analysis
2.3. Biotoxicity Evaluation
2.4. Biological Aerobic Treatment of HTL-AP
3. Results and Discussion
3.1. HTL-AP Chemical Composition
3.2. Evaluation of the Integral Toxicity of the Aqueous Phase Using Biotesting
3.3. The Results of the Aerobic Biological Treatment of HTL-AP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulikova, Y.; Sukhikh, S.; Ivanova, S.; Babich, O.; Sliusar, N. Review of Studies on Joint Recovery of Macroalgae and Marine Debris by Hydrothermal Liquefaction. Appl. Sci. 2022, 12, 569. [Google Scholar] [CrossRef]
- Leng, L.; Li, J.; Wen, Z.; Zhou, W. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour. Technol. 2018, 256, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.; Wang, T.; Si, B.; Chen, W.-T.; Aierzhati, A.; Zhang, Y. Valorization of hydrothermal liquefaction aqueous phase: Pathways towards commercial viability. Prog. Energy Combust. Sci. 2019, 77, 100819. [Google Scholar] [CrossRef]
- Leng, L.; Yang, L.; Chen, J.; Hu, Y.; Li, H.; Li, H.; Jiang, S.; Peng, H.; Yuan, X.; Huang, H. Valorization of the aqueous phase produced from wet and dry thermochemical processing biomass: A review. J. Clean. Prod. 2021, 294, 126238. [Google Scholar] [CrossRef]
- Ekpo, U.; Ross, A.; Camargo-Valero, M.; Williams, P. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresour. Technol. 2016, 200, 951–960. [Google Scholar] [CrossRef]
- Leng, L.; Zhou, W. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of wet biomass: A review. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 2648–2659. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.; Skill, S.; Lea-Langton, A.; Balasundaram, B.; Hall, C.; Riley, R.; Llewellyn, C. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 2012, 1, 70–76. [Google Scholar] [CrossRef]
- Boer, D.F.; Valette, J.; Commandre, J.M.; Fournier, M.; Thevenon, M.F. Slow pyrolysis of sugarcane bagasse for the production of char and thepotential of its by-product for Wood Protection. J. Renew. Mater. 2021, 9, 97–117. [Google Scholar] [CrossRef]
- Van Aken, P.; Broeck, R.V.D.; Degrève, J.; Dewil, R. The effect of ozonation on the toxicity and biodegradability of 2,4-dichlorophenol-containing wastewater. Chem. Eng. J. 2015, 280, 728–736. [Google Scholar] [CrossRef]
- Jayakody, L.N.; Johnson, C.W.; Whitham, J.M.; Giannone, R.J.; Black, B.A.; Cleveland, N.S.; Klingeman, D.M.; Michener, W.E.; Olstad, J.L.; Vardon, D.R.; et al. Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ. Sci. 2018, 11, 1625–1638. [Google Scholar] [CrossRef]
- Reza, M.T.; Freitas, A.; Yang, X.; Coronella, C.J. Wet Air Oxidation of Hydrothermal Carbonization (HTC) Process Liquid. ACS Sustain. Chem. Eng. 2016, 4, 3250–3254. [Google Scholar] [CrossRef]
- Thomsen, L.B.S.; Anastasakis, K.; Biller, P. Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. Water Res. 2021, 209, 117863. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, D.; Zhang, Y.; Zhou, J.; Tsang, Y.F.; Liu, Z.; Duan, N.; Zhang, Y. Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci. Total. Environ. 2018, 651, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Schideman, L.; Zheng, M.; Martin-Ryals, A.; Li, P.; Tommaso, G.; Zhang, Y. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Sci. Technol. 2015, 72, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Sabio, E.; González, E.; González, J.; González-García, C.; Ramiro, A.; Gañan, J. Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon 2004, 42, 2285–2293. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Xue, X.; Swita, M.S.; Schmidt, A.J.; Yang, B. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresour. Technol. 2017, 224, 457–464. [Google Scholar] [CrossRef]
- Posmanik, R.; Labatut, R.A.; Kim, A.H.; Usack, J.G.; Tester, J.W.; Angenent, L.T. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour. Technol. 2017, 233, 134–143. [Google Scholar] [CrossRef]
- Tommaso, G.; Chen, W.-T.; Li, P.; Schideman, L.; Zhang, Y. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresour. Technol. 2015, 178, 139–146. [Google Scholar] [CrossRef]
- Gai, C.; Zhang, Y.; Chen, W.-T.; Zhou, Y.; Schideman, L.; Zhang, P.; Tommaso, G.; Kuo, C.-T.; Dong, Y. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresour. Technol. 2015, 184, 328–335. [Google Scholar] [CrossRef]
- Fernandez, S.; Srinivas, K.; Schmidt, A.J.; Swita, M.S.; Ahring, B.K. Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresour. Technol. 2018, 247, 250–258. [Google Scholar] [CrossRef]
- Zheng, M.; Schideman, L.C.; Tommaso, G.; Chen, W.-T.; Zhou, Y.; Nair, K.; Qian, W.; Zhang, Y.; Wang, K. Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Convers. Manag. 2017, 141, 420–428. [Google Scholar] [CrossRef]
- Mohanty, S.; Patel, P.; Jha, E.; Panda, P.K.; Kumari, P.; Singh, S.; Sinha, A.; Saha, A.K.; Kaushik, N.K.; Raina, V.; et al. In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO2 nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum. Ecotoxicol. Environ. Saf. 2022, 241, 113708. [Google Scholar] [CrossRef] [PubMed]
- Amutha, V.; Aiswarya, D.; Deepak, P.; Selvaraj, R.; Tamilselvan, C.; Perumal, P.; Balasubramani, G. Toxicity potential evaluation of ethyl acetate extract of Cymodocea serrulata against the mosquito vectors vis-a-vis zebrafish embryos and Artemia salina cysts. S. Afr. J. Bot. 2023, 152, 230–239. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater. 5220 Chemical Oxygen Demand (Cod). Available online: https://www.standardmethods.org/doi/full/10.2105/SMWW.2882.103?role=tab (accessed on 5 April 2023).
- ISO 5815-1:2019(en) Water Quality—Determination of Biochemical Oxygen Demand after n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea Addition. Available online: https://dgn.isolutions.iso.org/obp/ui#!iso:std:iso:5815:-1:ed-2:v1:en (accessed on 5 April 2023).
- Kulikova, Y.; Krasnovskikh, M.; Sliusar, N.; Orlov, N.; Babich, O. Analysis and Comparison of Bio-Oils Obtained by Hydrothermal Liquefaction of Organic Waste. Sustainability 2023, 15, 980. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Saroja, S.G.; Khan, I.A. NMR technique and methodology in botanical health product analysis and quality control. J. Pharm. BioMed. Anal. 2021, 207, 114376. [Google Scholar] [CrossRef]
- Saito, T.; Nakaie, S.; Kinoshita, M.; Ihara, T.; Kinugasa, S.; Nomura, A.; Maeda, T. Practical guide for accurate quantitative solution state NMR analysis. Metrologia 2004, 41, 213–218. [Google Scholar] [CrossRef]
- Kryazhevskikh, A.A.; Bardina, V.I.; Sklyarova, N.A. Biotesting methods for the detection of drugs in the aquatic environment. Pharm. Formulas 2022, 4, 61–69. [Google Scholar] [CrossRef]
- Rajabi, S.; Ramazani, A.; Hamidi, M.; Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J. Pharm. Sci. 2015, 23, 20. [Google Scholar] [CrossRef]
- Galitskaya, P.Y.; Selivanovskaya, S.Y.; Gumerova, R.K. Testing of Wastes, Soils, Materials Using Living Systems: Tutorial-Method Allowance; Kazan University Publishing House: Kazan, Russia, 2014; pp. 14–23. (In Russian) [Google Scholar]
- Basar, I.A.; Liu, H.; Carrere, H.; Trably, E.; Eskicioglu, C. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 2021, 23, 1404–1446. [Google Scholar] [CrossRef]
- Khalilova, A.A.; Yakovlev, A.V.; Sirotkin, A.S. Comparative Assessment of the Toxicity of Wastewater Containing Chromium and Nickel Ions Using Various Test Organisms; Bulletin of the Kazan Technological University: Kazan, Russia, 2010; Volume 10, pp. 392–400. (In Russian) [Google Scholar]
Parameter | Primary Sludge | Secondary Sludge |
---|---|---|
C content, % | 54.58 ± 2.33 | 56.66 ± 0.31 |
H content, % | 8.20 ± 0.28 | 8.93 ± 0.11 |
O content, % | 25.30 ± 0.96 | 20.74 ± 0.18 |
N content, % | 4.22 ± 0.25 | 10.22 ± 0.12 |
Ash content (% d.m.) | 26.93 ± 0.23 | 31.3 ± 0.13 |
Total lipid content (%) | 5.2 ± 0.5 | 10.2 ± 0.7 |
Total protein content (%) | 9.98 ± 0.21 | 20.32 ± 0.21 |
Total carbohydrates content (%, calc.) | 57.89 ± 0.26 | 38.179 ± 0.25 |
HHV, MJ/kg (d.m.) | 7.41 | 8.69 |
Initial water content, % | 92–95 | 92–98 |
Mortality of Test Organisms, % | Solution Toxicity |
---|---|
0–30 | Non-toxic (NT) |
30–50 | Low-toxic (LT) |
50–100 | Highly-toxic (HT) |
Conditions * | pH | Total Inorganic C (g/dm3) | TOC (g/dm3) | Total N (mg/dm3) | COD (gO/dm3) | BOD5, (gO/dm3) |
---|---|---|---|---|---|---|
SS, standard, 1:15 | 7.14 ± 0.35 | 0.937 ± 0.038 | 5.298 ± 0.582 | 97.3 ± 13.6 | 8.0 ± 0.9 | 6.7 ± 1.1 |
SS, standard, 1:20 | 7.51 ± 0.37 | 0.795 ± 0.028 | 3.323 ± 0.433 | 60.5 ± 8.3 | 8.0 ± 1.1 | 6.0 ± 0.7 |
SS, standard, 10 min | 6.71 ± 0.33 | 0.746 ± 0.039 | 6.560 ± 1.021 | 122.0 ± 21.0 | 8.8 ± 1.8 | 8.1 ± 0.7 |
SS, standard, 15 min | 6.52 ± 0.32 | 0.974 ± 0.014 | 6.634 ± 0.340 | 124.7 ± 11.6 | 8.0 ± 0.8 | 7.5 ± 0.5 |
SS, standard | 7.03 ± 0.35 | 0.313 ± 0.016 | 9.311 ± 1.553 | 136.5 ± 15.7 | 10.0 ± 1.3 | 7.3 ± 0.9 |
SS, standard, 30 min | 7.56 ± 0.37 | 0.436 ± 0.029 | 4.566 ± 0.967 | 158.2 ± 22.1 | 7.9 ± 1.0 | 6.6 ± 0.8 |
SS, standard, Zeolite | 7.37 ± 0.36 | 0.657 ± 0.042 | 6.993 ± 0.078 | 37.8 ± 6.7 | 10.0 ± 0.7 | 8.0 ± 0.4 |
PS, standard, Zeolite | 7.01 ± 0.45 | 0.565 ± 0.029 | 9.55 ± 0.906 | 83.2 ± 9.4 | 12.0 ± 0.6 | 6.9 ± 0.6 |
PS, standard, CuSO4 | 6.78 ± 0.33 | 0.918 ± 0.056 | 4.171 ± 0.503 | 179.6 ± 11.9 | 12.0 ± 1.4 | 7.8 ± 0.9 |
PS, standard, NH4Fe(SO4)2 | 9.28 ± 0.46 | 0.384 ± 0.009 | 9.326 ± 0.781 | 395.2 ± 40.2 | 10.0 ± 1.2 | 8.0 ± 1.0 |
PS, standard, Al2O3 | 9.03 ± 0.45 | 0.978 ± 0.050 | 7.420 ± 0.545 | 295.6 ± 30.3 | 10.0 ± 0.9 | 7.9 ± 1.3 |
PS, standard, NiSO4 | 7.23 ± 0.36 | 0.918 ± 0.063 | 6.171 ± 1.301 | 240.4 ± 9.6 | 14.0 ± 0.5 | 7.9 ± 0.7 |
PS, standard, MoO3 2 g | 8.09 ± 0.40 | 0.577 ± 0.023 | 6.950 ± 0.745 | 157.5 ± 5.1 | 12.0 ± 1.6 | 8.0 ± 1.3 |
Conditions/Raw Material | COOH, CHO, ArOH (8.2–12.0) | Aromatic Hydrocarbons, Alkynes (6.0–8.2) | R-OH, -CH2-O-R, Alkenes (4.2–6.0) | R-CH2-O-R, CH3-O-R (3.0–4.2) | R-CH2-CH=O (2.0–3.0) | Aliphatic-H (0–2.0) |
---|---|---|---|---|---|---|
DMSO | ||||||
PS, standard, CuSO4 | 4.22 | 27.77 | 3.01 | 16.15 | 16.81 | 32.04 |
PS, standard, NiSO4 | 4.12 | 23.89 | 4.39 | 14.1 | 16.32 | 37.18 |
PS, standard, CuSO4 | 0.21 | 26.42 | 3.00 | 18.6 | 13.07 | 38.7 |
SS, standard, 20 min | 0.75 | 34.44 | 4.28 | 15.23 | 14.66 | 30.64 |
PS, standard, Zeolite | 1.42 | 29.41 | 3.02 | 15.57 | 15.29 | 35.29 |
D2O | ||||||
PS, standard, CuSO4 | 1.31 | 12.88 | 29.15 | 3.96 | 17.42 | 35.28 |
PS, standard, NiSO4 | 2.80 | 22.72 | 8.23 | 24.53 | 15.2 | 26.52 |
PS, standard, CuSO4 | 2.41 | 13.15 | 1.02 | 27.91 | 22.67 | 32.84 |
SS, standard, 20 min | 2.02 | 8.03 | 0.2 | 39.75 | 22.58 | 27.42 |
PS, standard, Zeolite | 1.58 | 7.77 | 1.92 | 24.48 | 27.97 | 36.28 |
Type of Raw Material, Conditions | Aldehydes, Ketones (220–180) | Acids and Derivatives (180–160) | Aromatic Hydrocarbons (160–105) | Pure Aromatic, No Substitution (140–125) | Alcohols, Esters, Sugars (60–105) | CH3O Group in Lignin (60–55) | Aliphatic Carbohydrates (55–1) |
---|---|---|---|---|---|---|---|
DMSO | |||||||
PS, standard, CuSO4 | 2.75 | 32.09 | 11.72 | 10.31 | 6.36 | 5.26 | 41.82 |
PS, standard, NiSO4 | 1.88 | 24.69 | 17.93 | 4.76 | 15.51 | 5.94 | 34.05 |
PS, standard, CuSO4 | 2.93 | 19.39 | 17.69 | 8.16 | 12.65 | 4.09 | 43.25 |
SS, standard, 20 min | 1.05 | 17.19 | 30.51 | 18.13 | 9.34 | 3.93 | 37.98 |
PS, standard, Zeolite | 0.00 | 30.80 | 12.62 | 6.96 | 7.55 | 7.80 | 41.23 |
D2O | |||||||
PS, standard, CuSO4 | 2.51 | 11.15 | 20.05 | 7.41 | 3.19 | 8.94 | 54.16 |
PS, standard, NiSO4 | 4.08 | 24.21 | 16.15 | 8.95 | 11.24 | 3.65 | 40.67 |
PS, standard, CuSO4 | 3.89 | 24.14 | 16.47 | 12.11 | 24.57 | 5.34 | 25.59 |
SS, standard, 20 min | 0.18 | 13.49 | 13.83 | 8.42 | 12.04 | 4.96 | 55.50 |
PS, standard, Zeolite | 0.00 | 22.70 | 15.75 | 6.98 | 9.46 | 7.12 | 44.97 |
Sample | Dilution | Paramecium caudatum | Artemia salina | ||||
---|---|---|---|---|---|---|---|
Death Rate, % | Toxicity Level * | DR50 | Death Rate, % | Toxicity Level | DR50 | ||
S. sludge, standard, 1:20 | 1:1 | 100 ± 0 | HT | 61.5 ± 8.3 | 100 ± 1 | HT | 80.3 ± 11.9 |
1:10 | 66 ± 8 | HT | 71 ± 4 | HT | |||
1:100 | 30 ± 6 | LT | 42 ± 8 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, 30 min | 1:1 | 100 ± 1 | HT | 62.4 ± 7.1 | 0 | HT | 69.6 ± 7.0 |
1:10 | 65 ± 7 | HT | 75 ± 7 | HT | |||
1:100 | 26 ± 3 | LT | 33 ± 6 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
P. sludge, standard, Zeolite 2 g | 1:1 | 100 ± 2 | HT | 49.4 ± 8.3 | 100 ± 3 | HT | 64.7 ± 9.5 |
1:10 | 56 ± 8 | HT | 70 ± 9 | HT | |||
1:100 | 15 ± 3 | LT | 30 ± 6 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, 1:15 | 1:1 | 100 ± 1 | HT | 44.9 ± 7.3 | 100 ± 2 | HT | 74.3 ± 6.7 |
1:10 | 63 ± 9 | HT | 62 ± 7 | HT | |||
1:100 | 14 ± 2 | LT | 40 ± 3 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, 20 min | 1:1 | 100 ± 0 | HT | 52.3 ± 7.3 | 100 ± 0 | HT | 80.1 ± 4.7 |
1:10 | 62 ± 10 | HT | 80 ± 5 | HT | |||
1:100 | 20 ± 4 | LT | 42 ± 3 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
P. sludge, standard, CuSO4 2 g | 1:1 | 100 ± 1 | HT | 51.7 ± 3.0 | 100 ± 2 | HT | 72.0 ± 3.0 |
1:10 | 60 ± 3 | HT | 75 ± 4 | HT | |||
1:100 | 22 ± 2 | LT | 35 ± 1 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
P. sludge, standard, NH4Fe(SO4)2·12H2O 2 g | 1:1 | 100 ± 0 | HT | 62.3 ± 5.3 | 100 ± 1 | HT | 83.4 ± 3.9 |
1:10 | 55 ± 5 | HT | 87 ± 5 | HT | |||
1:100 | 33 ± 2 | LT | 42 ± 2 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
P. sludge, standard, Al2O3 2 g | 1:1 | 100 ± 1 | HT | 57.6 ± 5.6 | 100 ± 2 | HT | 86.3 ± 7.1 |
1:10 | 71 ± 6 | HT | 85 ± 6 | HT | |||
1:100 | 22 ± 2 | LT | 43 ± 3 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
P. sludge, standard, NiSO4 2 g | 1:1 | 100 ± 0 | HT | 81.7 ± 6.1 | 100 ± 1 | HT | 142.2 ± 9.3 |
1:10 | 77 ± 5 | HT | 80 ± 6 | HT | |||
1:100 | 45 ± 3 | LT | 63 ± 2 | HT | |||
1:1000 | 0 | NT | 8 ± 1 | NT | |||
P. sludge, standard, MoO3 2 g | 1:1 | 100 ± 2 | HT | 69.5 ± 4.2 | 100 ± 1 | HT | 73.4 ± 2.9 |
1:10 | 73 ± 6 | HT | 87 ± 3 | HT | |||
1:100 | 46 ± 2 | LT | 33 ± 1 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, 10 min | 1:1 | 100 ± 1 | HT | 58.6 ± 6.9 | 100 ± 1 | HT | 83.4 ± 5.1 |
1:10 | 62 ± 7 | HT | 83 ± 7 | HT | |||
1:100 | 29 ± 4 | LT | 42 ± 2 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, 15 min | 1:1 | 100 ± 0 | HT | 70.8 ± 3.1 | 100 ± 0 | HT | 80.7 ± 4.1 |
1:10 | 59 ± 3 | HT | 67 ± 3 | HT | |||
1:100 | 39 ± 2 | LT | 42 ± 2 | LT | |||
1:1000 | 0 | NT | 0 | NT | |||
S. sludge, standard, Zeolite 2 g | 1:1 | 100 ± 1 | HT | 51.2 ± 4.0 | 100 ± 2 | HT | 84.1 ± 5.3 |
1:10 | 61 ± 2 | HT | 75 ± 6 | HT | |||
1:100 | 24 ± 2 | LT | 43 ± 2 | LT | |||
1:1000 | 0 | NT | 0 | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, Y.; Klementev, S.; Sirotkin, A.; Mokrushin, I.; Bassyouni, M.; Elhenawy, Y.; El-Hadek, M.A.; Babich, O. Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment. Water 2023, 15, 1681. https://doi.org/10.3390/w15091681
Kulikova Y, Klementev S, Sirotkin A, Mokrushin I, Bassyouni M, Elhenawy Y, El-Hadek MA, Babich O. Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment. Water. 2023; 15(9):1681. https://doi.org/10.3390/w15091681
Chicago/Turabian StyleKulikova, Yuliya, Sviatoslav Klementev, Alexander Sirotkin, Ivan Mokrushin, Mohamed Bassyouni, Yasser Elhenawy, Medhat A. El-Hadek, and Olga Babich. 2023. "Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment" Water 15, no. 9: 1681. https://doi.org/10.3390/w15091681
APA StyleKulikova, Y., Klementev, S., Sirotkin, A., Mokrushin, I., Bassyouni, M., Elhenawy, Y., El-Hadek, M. A., & Babich, O. (2023). Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment. Water, 15(9), 1681. https://doi.org/10.3390/w15091681