A High Accumulation of Dissolved Organic Matter in the Water Resulting from Terrestrial Input into a Large, Shallow Steppe Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.3. Physical and Chemical Analytical Methods
2.4. Analysis of Trophic Level Index and Contribution of Terrigenous DOM
2.5. Statistical Analysis
3. Results
3.1. The Physicochemical Characteristics of Water Samples
3.2. Spectral Characteristics of DOM
3.3. Correlations between Spectral Characteristics of DOM and Water Quality Parameters
4. Discussion
4.1. The Source and Composition of DOM in Hulun Lake
4.2. The Relative Contributions of Terrestrial DOM to Hulun Lake
4.3. The Factors Driving Terrigenous Organic Matter Input into Hulun Lake
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Krztoń, W.; Kosiba, J.; Pociecha, A.; Wilk-Woźniak, E. The effect of cyanobacterial blooms on bio-and functional diversity of zooplankton communities. Biodivers. Conserv. 2019, 28, 1815–1835. [Google Scholar] [CrossRef]
- Peng, J.; Ren, Z.; Song, Y.; Yu, H.; Tang, X.; Gao, H. Impact of spring flooding on dom characterization in a small watershed of the hun river, China. Environ. Earth Sci. 2015, 73, 5131–5140. [Google Scholar] [CrossRef]
- Wei, M.; Gao, C.; Zhou, Y.; Duan, P.; Li, M. Variation in spectral characteristics of dissolved organic matter in inland rivers in various trophic states, and their relationship with phytoplankton. Ecol. Indic. 2019, 104, 321–332. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Y.; Zhang, L.; Xie, X.; Wu, J.; Wei, Z.; Yang, H.; Zhang, S.; Song, C.; Jia, L. Photodegradation, bacterial metabolism, and photosynthesis drive the dissolved organic matter cycle in the Heilongjiang River. Chemosphere 2022, 295, 133923. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, E.; Yin, Y.; Dijk, M.A.V.; Qin, B. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol. Oceanogr. 2010, 55, 2645–2659. [Google Scholar] [CrossRef]
- Jaffé, R.; McKnight, D.M.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and temporal variations in dom composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. Biogeosci. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Dijk, M.A.V.; Liu, M.; Zhu, G.; Qin, B. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Res. 2009, 43, 4685–4697. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, B.; Jiang, X.; Chen, J.; Wang, S. Characteristics and Source of Dissolved Organic Matter in Lake Hulun, A Large Shallow Eutrophic Steppe Lake in Northern China. Water 2020, 12, 953. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Li, C.Y.; Shi, X.H.; Zhao, S.N.; Sun, B.; Han, Z.M. Temporal and spatital distributions and eutrophication of nutrients in the ice-cold period of Hulun Lake, China. Environ. Chem. 2019, 38, 1180–1189. [Google Scholar]
- Chen, X.; Chuai, X.; Yang, L.; Zhao, H. Climatic warming and overgrazing induced the high concentration of organic matter in lake hulun, a large shallow eutrophic steppe lake in northern China. Sci. Total Environ. 2012, 431, 332–338. [Google Scholar] [CrossRef]
- Song, K.; Shang, Y.; Wen, Z.; Jacinthe, P.A.; Liu, G.; Lyu, L.; Fang, C. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Res. 2019, 150, 403–417. [Google Scholar] [CrossRef]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Meyers, P.A.; Teranes, J.L. Sediment organic matter. Track. Environ. Chang. Using Lake Sediment. 2002, 2, 239–269. [Google Scholar]
- Zhang, Y.X.; Liang, X.Q.; Wang, Z.B.; Xu, L.X. A novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution. Sci. Rep. 2015, 5, 16079. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liao, Z.L.; Gu, X.Y.; Xie, J.Q.; Li, H.Z.; Zhang, J. Anthropogenic influences of paved runoff and sanitary sewage on the dissolved organic matter quality of wet weather overflows: An excitation-emission matrix parallel factor analysis assessment. Environ. Sci. Technol. 2017, 51, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zhou, Y.Q.; Shi, K.; Qin, B.Q.; Yao, X.L.; Zhang, Y.B. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Water Res. 2018, 131, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, B.; Jia, K.; Zhang, S.; Li, W.; Shi, X.; Cordovil, C.M.; Pereira, L.S. Multi-band remote sensing based retrieval model and 3D analysis of water depth in Hulun Lake, China. Math. Comput. Model. 2013, 58, 771–781. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, W.; Liao, Z.; Han, Z.; Xu, X.; Jiao, R.; Liu, H. Effects of climate change on lake area and vegetation cover over the past 55 years in Northeast Inner Mongolia Grassland, China. Theor. Appl. Clim. 2019, 138, 13–25. [Google Scholar] [CrossRef]
- Duan, L.M.; Liu, T.X.; Wang, X.X.; Luo, Y.Y.; Wu, L. Development of a regional regression model for estimating annual runoff in the Hailar River Basin of China. J. Water Resour. Prot. 2010, 2, 934–943. [Google Scholar] [CrossRef]
- Raveh, A.; Avnimelech, Y. Total nitrogen analysis in water, soil and plant material with persulphate oxidation. Water Res. 1979, 13, 911–912. [Google Scholar] [CrossRef]
- Ebina, J.; Tsutsui, T.; Shirai, T. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res. 1983, 17, 1726. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.P.; Li, S.; Duan, H.; Liu, D.; Hall, B.E.; Du, J.; Li, Z.; Shi, K.; et al. Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus ga-pls model. Remote Sens. Environ. 2013, 136, 342–357. [Google Scholar] [CrossRef]
- Wang, M.C.; Liu, X.Q.; Zhang, J.H. Evaluate method and classification standard on lake eutrophication. Environ. Monit. China 2002, 18, 47–49. [Google Scholar]
- McKnight, D.M.; Aiken, G.R. Sources and age of aquatic humus, in Aquatic Humic Substances. Ecol. Biogeochem. 1998, 133, 9–40. [Google Scholar]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation?emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Feng, W.Y.; Zhu, Y.R.; Wu, F.C.; Zhang, X.; Zhang, C. The fluorescent characteristics and sources of dissolved organic matter in water of Tai Lake, China. Acta Sci. Circumst. 2016, 36, 475–482. [Google Scholar]
- Iuculano, F.; Alvarez-Salgado, X.A.; Sobrino, C.; Duarte, C.M.; Agusti, S. Chromophoric dissolved organic matter (CDOM) in the epipelagic global ocean. In Proceedings of the ASLO Aquatic Science Metting, Granada, Spain, 22–27 February 2015. [Google Scholar]
- Wolfe, A.P.; Kaushal, S.S.; Fulton, J.R.; Mcknight, D.M. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environ. Sci. Technol. 2002, 36, 3217–3223. [Google Scholar] [CrossRef]
- Prahl, F.G.; Bennett, J.T.; Carpenter, R. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from dabob bay, washington. Geochim. Cosmochim. Acta 1980, 44, 1967–1976. [Google Scholar] [CrossRef]
- Bertrand, S.; Sterken, M.; Vargas-Ramirez, L.; Batist, M.D.; Vyverman, W.; Lepoint, G.; Fagel, N. Bulk organic geochemistry of sediments from puyehue lake and its watershed (chile, 40 °s): Implications for paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 294, 56–71. [Google Scholar] [CrossRef]
- Chappaz, A.; Gobeil, C.; Tessier, A. Controls on uranium distribution in lake sediments. Geochim. Cosmochim. Acta 2010, 74, 203–214. [Google Scholar] [CrossRef]
- Cory, R.M.; Miller, M.P.; Mcknight, D.M.; Guerard, J.J.; Miller, P.L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Meth. 2010, 8, 67–78. [Google Scholar]
- Sanclements, M.D.; Oelsner, G.P.; Mcknight, D.M.; Stoddard, J.L.; Nelson, S.J. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the northeastern united states. Environ. Sci. Technol. 2012, 46, 3212–3219. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef]
- Montserrat, F.; Juan, R.M. Long-term trends of organic carbon concentrations in freshwaters: Strengths and weaknesses of existing evidence. Water 2014, 6, 1360–1418. [Google Scholar]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Wan, Q.Q.; Pu, Q.; Ding, G.D.; Wu, B. Analysis on the reason of sandy desertif ication in Hulunber Steppe. Res. Soil Water Conserv. 2007, 14, 263–266. [Google Scholar]
- Li, Z.Q.; Liu, Z.G.; Chen, Z.Z.; Yang, Z.G. Climate change and its impact on productivity in typical grassland areas of China. Acta Prataculturae Sin. 2003, 12, 4–10. [Google Scholar]
- Fang, X.Q.; Yu, W.H. Progress in the studies on the phenological responding to global warming. Adv. Earth Sci. 2002, 17, 714–719. [Google Scholar]
- Yin, Y.T.; Hou, X.Y.; Yun, X.J. Advances in the climate change influencing grassland ecosystems in Inner Mongolia. Pratacultural. Sci. 2011, 06, 258–265. [Google Scholar]
- Li, J.; Zhang, C.L.; Li, Q.; Shen, Y.P.; Jia, W.R.; Tian, J.L. Development of sandy desertification and driving forces in Hulun Buir sandy land in the past 15 years. J. Beijing Norm. Univ. (Nat. Sci.) 2017, 53, 323–328. [Google Scholar]
Chl.a | TP | TN | CODMn | |
---|---|---|---|---|
rij | 1 | 0.84 | 0.82 | 0.83 |
rij2 | 1 | 0.7056 | 0.6724 | 0.6889 |
Label | Description | Excitation (nm) | Emission (nm) | Source |
---|---|---|---|---|
C | Visible Fulvic-like | 320–360 | 420–460 | [26] |
C | Visible Fulvic-like | 275–310 | 380–460 | [27] |
T | Tryptophan-like | 270–290 | 320–370 | [27] |
T | Tryptophan-like | 286 | 336 | [28] |
DO | pH | T | TP | DTP | TN | DTN | DOC | COD | C/N | FI | TLI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DO | 1 | 0.391 | −0.147 | −0.129 | 0.335 | 0.339 | 0.492 * | 0.465 * | 0.552 ** | 0.404 * | −0.332 | 0.198 |
pH | 1 | 0.593 ** | −0.333 | 0.346 | 0.544 ** | 0.737 ** | 0.736 ** | 0.807 ** | 0.426 * | −0.393 | 0.378 | |
T | 1 | 0.316 | 0.229 | 0.602 ** | 0.556 ** | 0.366 | 0.453 * | −0.146 | 0.034 | 0.616 ** | ||
TP | 1 | 0.232 | 0.479 * | 0.227 | −0.179 | −0.054 | −0.586 ** | 0.432 * | 0.637 ** | |||
DTP | 1 | 0.420 * | 0.502 * | 0.505 * | 0.514 * | 0.237 | −0.162 | 0.463 * | ||||
TN | 1 | 0.933 ** | 0.615 ** | 0.749 ** | −0.008 | −0.062 | 0.918 ** | |||||
DTN | 1 | 0.807 ** | 0.916 ** | 0.286 | −0.278 | 0.794 ** | ||||||
DOC | 1 | 0.936 ** | 0.756 ** | −0.558 ** | 0.419 * | |||||||
COD | 1 | 0.561 ** | −0.507 * | 0.587 ** | ||||||||
C/N | 1 | −0.662 ** | −0.232 | |||||||||
FI | 1 | 0.062 | ||||||||||
TLI | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, W.; Du, W.; Cao, B.; Wang, W.; Pang, B.; Dou, H.; Ao, W.; Liu, B.; Yao, S. A High Accumulation of Dissolved Organic Matter in the Water Resulting from Terrestrial Input into a Large, Shallow Steppe Lake. Water 2023, 15, 1646. https://doi.org/10.3390/w15091646
Zhang C, Li W, Du W, Cao B, Wang W, Pang B, Dou H, Ao W, Liu B, Yao S. A High Accumulation of Dissolved Organic Matter in the Water Resulting from Terrestrial Input into a Large, Shallow Steppe Lake. Water. 2023; 15(9):1646. https://doi.org/10.3390/w15091646
Chicago/Turabian StyleZhang, Chi, Wenjing Li, Wei Du, Bingshuai Cao, Wenlin Wang, Bo Pang, Huashan Dou, Wen Ao, Bo Liu, and Shihao Yao. 2023. "A High Accumulation of Dissolved Organic Matter in the Water Resulting from Terrestrial Input into a Large, Shallow Steppe Lake" Water 15, no. 9: 1646. https://doi.org/10.3390/w15091646
APA StyleZhang, C., Li, W., Du, W., Cao, B., Wang, W., Pang, B., Dou, H., Ao, W., Liu, B., & Yao, S. (2023). A High Accumulation of Dissolved Organic Matter in the Water Resulting from Terrestrial Input into a Large, Shallow Steppe Lake. Water, 15(9), 1646. https://doi.org/10.3390/w15091646