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Abstract: Dissolved organic matter (DOM) is generally the dominant carbon pool in freshwater
lakes and plays a vital role in the regional or even global carbon cycle. In recent years, steppe lakes
have been subject to two stressors: eutrophication and abnormally high concentrations of organic
matter. However, little is known about the sources and composition of the organic matter. In this
study, carbon/nitrogen (C/N) ratios and three-dimensional excitation–emission matrix (3DEEM)
fluorescence spectroscopy were adopted to identify the sources and composition of DOM in Hulun
Lake, a large shallow steppe lake. The physicochemical and water quality parameters of Hulun Lake
and three inflow rivers, Crulen River, Orshen River and Hailar River, were also investigated. The
results showed that visible fulvic-like fluorescence (peak C) and tryptophan-like substances (peak T)
were the main components of the DOM. The C/N atomic ratios and spectral characteristics of the
DOM suggested that approximately 82% of the DOM in Lake Hulun is derived from terrigenous
material. The results underscore that it is necessary to devote more research attention to terrestrial
inputs into steppe lakes.

Keywords: Hulun Lake; steppe; organic matter; eutrophication; source identification

1. Introduction

With increasing eutrophication in lakes across the world, the number of cyanobac-
teria outbreaks has increased significantly, and the biodiversity of aquatic systems has
decreased [1,2]. Dissolved organic matter (DOM) is the largest organic carbon source, and
it plays an important role in the physicochemical and microbial degradation processes
of aquatic systems [3–5]. Chromophoric dissolved organic matter (CDOM) can absorb
energy and re-emit it as fluorescence through chemical processes, thus constituting the
colored component of DOM [6]. DOM has both autochthonous and allochthonous sources.
Autochthonous production results from organisms that grow in situ, such as hydrophytes
and other photoautotrophs, and release of substances from sediment. Allochthonous inputs
are discharged into a lake by rivers, atmospheric deposition or runoff, and can contain
anthropogenic products [7–9].

The shallow steppe lake, considered to be a crucial ecosystem, provides a unique
habitat for local fish, birds and other aquatic life [10]. As one of typical steppe lakes in the
cold and arid regions of China, Hulun Lake is located on the Hulun Buir Steppe, where the
surrounding population density is low and human influence is relatively limited [11]. How-
ever, it was found that the DOM content in Hulun Lake was unusually high and reached

Water 2023, 15, 1646. https://doi.org/10.3390/w15091646 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15091646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15091646
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15091646?type=check_update&version=1


Water 2023, 15, 1646 2 of 13

approximately 59 mg C/L [11]. It is several times that of freshwater lakes and salt lakes in
China, which have DOM concentrations of 6.68 mg C/L and 27.4 mg C/L, respectively [12].
Therefore, it is necessary to carry out in-depth research on the phenomenon of high DOM
concentration in these steppe lakes in order to explore whether the DOM derives from
internal production or terrestrial input.

In recent years, several techniques have been widely used to analyze the sources of
DOM in lakes. Atomic C/N ratios are commonly used to distinguish between terrestrial
(soils, vascular plant debris) and autochthonous microbial (phytoplankton) sources of
DOM [13]. Higher C/N values indicate DOM derived from pure soil organic matter
(C/N > 10) and vascular plant debris (C/N > 20), while lower C/N values indicate organic
matter from phytoplankton (C/N ≈ 4–10) [12,14]. Recently, the combined technique of
excitation–emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC) has
been developed and applied to evaluate the sources and composition of DOM in aquatic
ecosystems [15,16]. Furthermore, the composition and optical properties of DOM are
affected by the nutrient level. The relative molecular size and the slope ratio of DOM have
been found to be negatively correlated with nutrient level [17]. The nutrient level could
lead to an increase in the endogenous ratio of DOM by accelerating phytoplankton growth,
but the spectral characteristics of DOM were not directly affected by the phytoplankton
community [4]. Therefore, the effect of the nutrient level on the composition and spectral
characteristics of DOM is an important and cutting-edge scientific topic in the field of
DOM research.

Hulun Lake is a lake characteristic of grassland areas and is in a high-altitude region.
Until now, comprehensive analysis of concentrations and characteristics of DOM in Hulun
Lake and of the origins of the DOM has not been conducted. Furthermore, there have been
few studies on similar lakes. In this study, we analyzed the fluorescence and sources of
CDOM in Hulun Lake and its principal inflow rivers. The objectives of the study are the
following: (1) characterize the variation in spectral characteristics of DOM; (2) determine
the correlations between CDOM fluorescence and water-quality parameters; and (3) reveal
the origin of DOM and the factors influencing it.

2. Materials and Methods
2.1. Study Sites

Hulun Lake, located in northeast Inner Mongolia, is the fifth largest lake in China
(48◦31′–49◦20′ N; 116◦58′–117◦48′ E). Its average water depth is around 5.7 m, with a
maximum water depth of 8 m recorded in 1968, and a minimum water depth of 3 m
observed in 2009 [18]. The water storage of the lake ranges from 14.0 billion m3 to 3.3 billion
m3, and its area ranges from 1609.6 km2 to 2406.0 km2 [19]. In 1992, the Hulun Lake National
Nature Reserve was established, covering an area of 7400 km2 [19].

The whole area is sparsely populated, and anthropogenic influence has been limited
to inflow discharge with regard to three inlet rivers, Crulen River, Orshen River and Hailar
River, and one outlet river, Xinkai River (Figure 1). The average annual runoff of Crulen
River and Orshen River were 1.91 million m3 and 4.07 million m3, respectively, between
2001 and 2019 (data acquired from Hulun Buir Bureau of Water). Hailar River, located in
southeastern Hulunbeir in China, is the mother river of the Hulun Buir Steppe. The river
runs out of the Da Xingan mountains, and the length of its main channel is 708.5 km [20].
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Figure 1. Allocation of sampling sites in Hulun Lake and the three headwater streams of Crulen
River, Orshen River and Hailar River.

2.2. Sampling

The investigation was conducted in August 2019. In total, 24 water samples were
collected from Hulun Lake (L1 to L8), Crulen River (C9 to C11), Orshen River (O12 and
O14) and Hailar River (H15 to H24) (Figure 1). Monitoring stations were set up in the
upper, middle and lower reaches of each river to monitor water quality along its length.
The stations were set up on bridges or in places that were relatively easy to monitor. Eight
points were set up in Hulun Lake to allow the study to fully characterize the differences
between different regions. The samples were carefully collected from 50 cm beneath the air–
water interface, with three collected from each site. They were stored in amber glass bottles
at a cool temperature and immediately transported to the laboratory for quantification.

2.3. Physical and Chemical Analytical Methods

Water temperature (T), the pH and dissolved oxygen (DO) levels were measured in situ
using a multiparameter water quality monitor at each sampling site (YSI 6600, Washington,
DC, USA). In the laboratory, total nitrogen (TN) was analyzed using a UV-6100 spectropho-
tometer (Mapada, Shanghai, China) and the method of Raveh and Avnimelech [21]. Total
phosphorus (TP) was tested using colorimetry after digestion with K2S2O8 and NaOH [22].
Samples for dissolved total nitrogen (DTN) and phosphorus (DTP) were filtered first and
then measured with the same methods used for TN and TP. Total organic carbon (TOC)
was analyzed using a total organic carbon analyzer (TOC-L CPN, Shimadzu, Japan). The
C/N ratio was calculated based on TOC and TN values. Chemical oxygen consumption
(CODMn) was measured using the acid-potassium permanganate method. Measurements
of chlorophyll a (Chl.a) were obtained via acetone extraction [23]. The 3DEEM spectra of
samples were measured with an RF-6000 fluorescence spectrometer.

2.4. Analysis of Trophic Level Index and Contribution of Terrigenous DOM

The trophic level index (TLI) method based on Chl.a was used to evaluate the eutroph-
ication state [24]. In accordance with the empirical recommendations for lake water quality
in China, the relative weights of water quality parameters were selected (Table 1). In sum-
mary, different trophic state indices, including Chl.a, TP, TN and CODMn, were calculated,
followed by the normalized correlation weight of the parameters. Then, the weighted
average of the comprehensive trophic state index of the water body was calculated as part
of the study [24].
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Table 1. The correlation between chlorophyll a and the parameters of lake water (reservoir) in
China [24].

Chl.a TP TN CODMn

rij 1 0.84 0.82 0.83
rij

2 1 0.7056 0.6724 0.6889
Note: Chl.a: chlorophyll a; TP: total phosphorus; TN: total nitrogen; CODMn: chemical oxygen demand.

The contribution of terrigenous DOM was calculated by substituting the FI values
in the model equation [25]. The modeled relationship between FI and the proportional
contribution from terrestrial sources is as follows:

y = 3.94(0.18x + 10)−0.316 (1)

where y represents FI, and x represents the contribution of allochthonous DOM.

2.5. Statistical Analysis

Statistical Package for the Social Sciences 24.0 (IBM Corp, Armonk, NY, USA) was used
for statistical analysis. Pearson’s correlation analyses were used for exploring relationships
between water quality variables and odorants (p < 0.05). A dendrogram was produced
by CA using Ward’s method with squared Euclidean distances. The graphs were plotted
using Origin 9.0 software.

3. Results
3.1. The Physicochemical Characteristics of Water Samples

The physical and chemical characteristics of sampling sites from August 2019 are
listed in Figure 2. The concentration of DO in Hulun Lake ranged from 7.82 mg/L to
11.67 mg/L, and the average value was 9.67 mg/L. In Crulen River, DO was at a steady
value of 7.54 mg/L. However, DO concentration in Orshen River ranged from 3.56 mg/L
to 7.76 mg/L, with the lowest value observed in the estuary. The content of DO in Hailar
River ranged from 7.30 mg/L to 9.56 mg/L, with a mean value of 8.17 mg/L. Hulun Lake
was weakly alkaline with a pH value ranging from 8.83 to 9.40. In Crulen River, the average
pH was 7.66, and higher values were found in the estuary. In Orshen River, the pH at
sampling sites ranged from 8.34 to 8.78; there was no significant difference in pH across the
sampling sites. The pH values measured in the estuary of Hailar River were much higher
than levels recorded upstream.
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In Figure 2, the TN of Hulun Lake ranges from 2.01 mg/L to 3.57 mg/L, with an
average value of 2.45 mg/L. The highest TN was in the northeast section of the lake (L6).
DTN concentrations ranged from 1.72 mg/L to 2.37 mg/L, with a mean value of 1.91 mg/L.
The dominant share of TN was DTN (the highest concentration of DTN being 88.92% of
TN). The concentrations of TP and DTP ranged from 0.09 mg/L to 0.26 mg/L and from
0.03 mg/L to 0.14 mg/L, respectively. The level of TOC oscillated between 21.47 mg/L and
39.75 mg/L in Hulun Lake, with an average of 32.58 mg/L.

Nutrient loadings from Crulen River, Orshen River and Hailar River demonstrated
the contrast in TN, TP and COD inflows during the study. In Crulen River, TN oscillated
between 2.09 mg/L and 2.96 mg/L, with an average of 2.60 mg/L. The highest value
occurred in the estuary. The highest concentration of DTN was 53.97% of TN. In Orshen
River, the concentrations of TN and DTN ranged from 0.97 mg/L to 1.70 mg/L and from
0.88 mg/L to 1.07 mg/L, respectively. The highest value occurred in the estuary, which was
consistent with the pattern seen in Crulen River. In Hailar River, TN and DTN ranged from
0.53 mg/L to 0.98 mg/L and from 0.40 mg/L to 0.73 mg/L, with averages of 0.72 mg/L
and 0.58 mg/L, respectively. The mean values of TP in Crulen River, Orshen River and
Hailar River were 1.27 mg/L, 0.11 mg/L and 0.12 mg/L, respectively. The dominant share
of TP was PTP. TOC in Crulen River and Orshen River oscillated between 5.75 mg/L and
10.45 mg/L and between 8.58 mg/L and 10.48 mg/L, respectively, with maximum values
occurring in the estuary of both rivers. In Hailar River, the level of TOC varied from
5.33 mg/L to 9.20 mg/L.

C/N atomic ratios and stable carbon isotopes were used to distinguish the contribu-
tions of terrigenous origin and those from phytoplankton. In Hulun Lake, the C/N ratios
ranged from 6.01 to 17.90 (Figure 3). The lowest C/N atomic ratios were recorded in the
northeast part of the lake (L6), which contained a high concentration of Chl.a (96 µg/L). At
the sampling site, the DOM was mainly derived from phytoplankton due to the influence
of cyanobacterial blooms. C/N levels in Crulen River varied from 2.15 mg/L to 3.53 mg/L,
with a mean value of 2.81 mg/L. The mean values for C/N in Orshen River and Hailar
River were 7.64 mg/L and 9.30 mg/L, respectively.
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3.2. Spectral Characteristics of DOM

The 3DEEM technique was used to identify the sources of DOM in Lake Hulun and
the rivers. The peaks in the fluorescence EEMs of DOM in water of Lake Hulun and
the rivers were similar to previously identified peaks (Figure 4, Table 2). Generally, these
fluorescence EEMs featured two main peaks. One main peak was at the excitation/emission
wavelengths (Ex/Em) of 325/425 nm (designated Peak C), which has been identified as
visible fulvic-like fluorescence [8]. The other was observed at Ex/Em of 300/350 nm and is
regarded as relating to tryptophan-like substances (designated Peak T).
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Table 2. Major fluorescence peaks and their spectral positions for dissolved organic matter as stated
in previous studies.

Label Description Excitation (nm) Emission (nm) Source

C Visible Fulvic-like 320–360 420–460 [26]

C Visible Fulvic-like 275–310 380–460 [27]

T Tryptophan-like 270–290 320–370 [27]

T Tryptophan-like 286 336 [28]

The FI in Hulun Lake ranged from 1.38 to 1.55, with an average of 1.43 (Figure 5).
The mean values of FI in Crulen River, Orshen River and Hailar River were 1.53, 1.48 and
1.49, respectively.

3.3. Correlations between Spectral Characteristics of DOM and Water Quality Parameters

In this study, Orshen River and Hailar River were in a mild eutrophication state with
TLI values of 56.42 and 50.23, respectively. The level of TLI in Hulun Lake was 64.91,
indicating an intermediate nutrition status. Crulen River was in a severe eutrophication
state, with TLI values exceeding 70 (Figure 6). There were strong positive correlations
between TLI and water quality constituents, such as TN, TP, TOC and COD (Table 3).
Significant correlations were also found between TN and DTN and between TOC and TN
(p < 0.01). A positive correlation was also observed between TP and TN (p < 0.05). However,
there were strong negative correlations between FI and C/N. The FI increases as the C/N
ratio decreases [29]. In the current study, the COD and TOC showed a significant positive
correlation (p < 0.01), indicating that TOC was the predominant organic matter in the water.
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DOC        1 0.936 ** 0.756 ** −0.558 ** 0.419 * 

COD         1 0.561 ** −0.507 * 0.587 ** 

C/N          1 −0.662 ** −0.232 

FI           1 0.062 

TLI            1 

Significant correlation at the * p < 0.05 and ** p < 0.01 levels. 
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Table 3. Pearson’s correlation matrix of the water quality indices in samples.

DO pH T TP DTP TN DTN DOC COD C/N FI TLI

DO 1 0.391 −0.147 −0.129 0.335 0.339 0.492 * 0.465 * 0.552 ** 0.404 * −0.332 0.198

pH 1 0.593 ** −0.333 0.346 0.544 ** 0.737 ** 0.736 ** 0.807 ** 0.426 * −0.393 0.378

T 1 0.316 0.229 0.602 ** 0.556 ** 0.366 0.453 * −0.146 0.034 0.616 **

TP 1 0.232 0.479 * 0.227 −0.179 −0.054 −0.586 ** 0.432 * 0.637 **

DTP 1 0.420 * 0.502 * 0.505 * 0.514 * 0.237 −0.162 0.463 *

TN 1 0.933 ** 0.615 ** 0.749 ** −0.008 −0.062 0.918 **

DTN 1 0.807 ** 0.916 ** 0.286 −0.278 0.794 **

DOC 1 0.936 ** 0.756 ** −0.558 ** 0.419 *

COD 1 0.561 ** −0.507 * 0.587 **

C/N 1 −0.662 ** −0.232

FI 1 0.062

TLI 1

Note: Significant correlation at the * p < 0.05 and ** p < 0.01 levels.

4. Discussion
4.1. The Source and Composition of DOM in Hulun Lake

There is widespread use of 3DEEM fluorescence spectroscopy to identify sources of
organic matter in water or soil. The fluorescence index (FI) is the ratio of the emission
intensity at a wavelength of 470 nm to the emission intensity at 500 nm, following an
excitation wavelength of 370 nm. It has been found that the FI can be adopted as an
important parameter to distinguish sources of CDOM. The FI in Hulun Lake ranged from
1.38 to 1.55, with an average of 1.43, which indicated that allochthonous organic matter is
the main source of DOM in the lake.

C/N ratios have been widely used to determine OM sources and biogeochemical
processing in natural lakes. The C/N ratio of the OM derived from terrigenous material
was more than 20, while phytoplankton exhibits C/N ratios of between 4 and 10 [14].
Prahl et al. [30], however, considered the C/N ratio of terrigenous organic matter to be
over 12 rather than over 20. In addition, a study has shown that the contribution of fresh
vegetation to organic matter appears relatively small, meaning a C/N ratio of 14.6 may be
representative of terrestrial sources [31]. Chappaz et al. [32]. found that the C/N atomic
ratios of OM in certain lakes dominated by terrestrial materials were only 13–16. In this
context, the average C/N ratio of 13.91 in Hulun Lake suggests that the DOM within
it is largely dominated by terrigenous matter. The C/N ratios of all rivers were below
16; the C/N ratio of Crulen River was the lowest of the three rivers entering the lake,
while the C/N ratios observed in Hailar River gradually decreased, moving upstream to
downstream. The C/N values of different types of soils have also been investigated in the
Hulun Lake Basin (unpublished). The average C/N ratios in grassland and forest soils
were 10.35 and 15.61, respectively, which were similar to the values in Hulun Lake. Thus,
the DOM in Lake Hulun is terrigenous matter originating from, for example, soil leaching
and riverine inputs.

As shown in Figure 7, the spatial clustering analysis produced a tree diagram, which
classified 24 sampling points into 5 clusters with statistical significance. Group I comprised
sampling sites 1, 14, 19, 20, 21, 22 and 24; Group II contained sampling sites 6, 12, 13, 15,
16, 17 and 18; Group III consisted of the sites 9, 10 and 11; Group IV contained sampling
sites 2, 7 and 23; and Group V included the remaining sampling sites. The results showed
that the concentration of organic matter in Hulun Lake is affected equally by the different
river inputs.



Water 2023, 15, 1646 10 of 13Int. J. Environ. Res. Public Health 2023, 20, x  10 of 13 
 

 

 

Figure 7. Dendrogram showing spatial correlation analysis of sampling sites. Hulun Lake (1–8), 

Crulen River (9–11), Orshen River (12–14) and Hailar River (15–24). 

Additionally, the contribution of phytoplankton in summer cannot be ignored. At 

the L6 sampling site, the lower C/N value indicated that phytoplankton contributed a cer-

tain fraction of the DOM in Hulun Lake during the summer. The FI value (1.55) further 

confirmed this conclusion.  

4.2. The Relative Contributions of Terrestrial DOM to Hulun Lake  

DOM fluorescence spectra have been widely studied to investigate the age, source 

and reactivity of DOM from a variety of aquatic and marine sources [33]. The relative 

contributions of autogenic and terrestrial organic materials to DOM can be distinguished 

by analyzing the fluorescence properties of the fulvic acid share of DOM [25]. FI provides 

valuable information regarding the source and quality of DOM [34]. 

The mean values of FI in Hulun Lake, Crulen River, Orshen River and Hailar River 

were 1.43, 1.53, 1.48 and 1.49, respectively. The contributions of allochthonous DOM to 

Crulen River, Orshen River and Hailar River were determined to be 55.41%, 66.77% and 

66.11%, respectively. In Hulun Lake, the contribution of allochthonous DOM could be 

calculated to range from 50.83% to 98.10%, with an average of 82.07%, which was similar 

to the results of Chen et al. [11].  

4.3. The Factors Driving Terrigenous Organic Matter input into Hulun Lake  

An increase in DOM concentrations has been observed in lakes of the Northern Hem-

isphere, and is thought to have been caused by the climate and changes in land use [35,36]. 

Fellman et al. [37] found land use and land management to have an impact on the bio-

chemistry of DOM in water systems. Hulun Lake, located on the Hulun Buir Steppe, is a 

lake in one of the cold regions of northern China. The number of livestock grazing on the 

Hulun Buir Steppe rose from 1.106 million in 1949 to 6.77 million in 2004, increasing more 

than sixfold in 55 years. This led to overgrazing [38]. Climate change and the increased 

impacts of human activities are directly or indirectly affecting grassland ecosystems [39]. 

The annual average air temperature of Lake Hulun gradually increased between 1958 and 

2018 (Figure 8a). As the temperature rises, evaporation increases, making the surface 

evaporation increment much greater than the precipitation increment; grassland water 

loss becomes a serious issue, soil salinity increases, native vegetation growth is blocked 

and regional vegetation cover changes significantly [40,41]. The degradation of grassland 

is significant, and the proportion of weeds increases. Tumbleweed is common on Inner 

Mongolian grassland. In this study, C/N atomic ratios and spectral characteristics of DOM 

Figure 7. Dendrogram showing spatial correlation analysis of sampling sites. Hulun Lake (1–8),
Crulen River (9–11), Orshen River (12–14) and Hailar River (15–24).

Additionally, the contribution of phytoplankton in summer cannot be ignored. At
the L6 sampling site, the lower C/N value indicated that phytoplankton contributed a
certain fraction of the DOM in Hulun Lake during the summer. The FI value (1.55) further
confirmed this conclusion.

4.2. The Relative Contributions of Terrestrial DOM to Hulun Lake

DOM fluorescence spectra have been widely studied to investigate the age, source
and reactivity of DOM from a variety of aquatic and marine sources [33]. The relative
contributions of autogenic and terrestrial organic materials to DOM can be distinguished
by analyzing the fluorescence properties of the fulvic acid share of DOM [25]. FI provides
valuable information regarding the source and quality of DOM [34].

The mean values of FI in Hulun Lake, Crulen River, Orshen River and Hailar River
were 1.43, 1.53, 1.48 and 1.49, respectively. The contributions of allochthonous DOM to
Crulen River, Orshen River and Hailar River were determined to be 55.41%, 66.77% and
66.11%, respectively. In Hulun Lake, the contribution of allochthonous DOM could be
calculated to range from 50.83% to 98.10%, with an average of 82.07%, which was similar to
the results of Chen et al. [11].

4.3. The Factors Driving Terrigenous Organic Matter Input into Hulun Lake

An increase in DOM concentrations has been observed in lakes of the Northern
Hemisphere, and is thought to have been caused by the climate and changes in land
use [35,36]. Fellman et al. [37] found land use and land management to have an impact
on the biochemistry of DOM in water systems. Hulun Lake, located on the Hulun Buir
Steppe, is a lake in one of the cold regions of northern China. The number of livestock
grazing on the Hulun Buir Steppe rose from 1.106 million in 1949 to 6.77 million in 2004,
increasing more than sixfold in 55 years. This led to overgrazing [38]. Climate change
and the increased impacts of human activities are directly or indirectly affecting grassland
ecosystems [39]. The annual average air temperature of Lake Hulun gradually increased
between 1958 and 2018 (Figure 8a). As the temperature rises, evaporation increases, making
the surface evaporation increment much greater than the precipitation increment; grassland
water loss becomes a serious issue, soil salinity increases, native vegetation growth is
blocked and regional vegetation cover changes significantly [40,41]. The degradation of
grassland is significant, and the proportion of weeds increases. Tumbleweed is common on
Inner Mongolian grassland. In this study, C/N atomic ratios and spectral characteristics
of DOM suggested that approximately 82% of the DOM in Lake Hulun is derived from
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terrigenous material. Tumbleweed is also a major source of terrestrial input. As shown
in Figure 8b, the area of grassland desertification in 2015 was 2.06 times that in 2002 [42].
Grassland degradation and the desertification of land will increase dust storm erosion and
aggravate eutrophication in Hulun Lake. Therefore, the stability of grassland ecosystems
warrants meaningful consideration and attention.
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5. Conclusions

This study investigated the concentrations and characteristics of CDOM and water
parameters (TN, DTN, TP, DTP, TOC, COD, Chl.a, pH and DO) in Hulun Lake and its main
inflow rivers. Two fluorescent components were identified from the DOM using the EEM-
PARAFAC method: visible fulvic-like fluorescence (Ex/Em = 325/425 nm) and tryptophan-
like substances (Ex/Em = 300/350 nm). The C/N ratio and spectral characteristics of DOM
indicate that the majority (around 82%) of the DOM in Hulun Lake is the contribution
of terrestrial materials such as those from river input. These findings provide technical
support for the further analysis of pollution sources and for decision-making by parties
involved in the environmental management of lakes.
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