Effects of the Eating Habits of Romanian Residents on the Water Footprint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gross Average Annual Food Consumption of Each Type of Food
2.2. Water Footprint per Unit of Food Consumed
2.3. Calculation of the Water Footprint
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simonovic, S.P.; Breach, P.A. The Role of Water Supply Development in the Earth System. Water 2020, 12, 3349. [Google Scholar] [CrossRef]
- Bolpagni, R.; Poikane, S.; Laini, A.; Bagella, S.; Bartoli, M.; Cantonati, M. Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges. Water 2019, 11, 402. [Google Scholar] [CrossRef]
- Butte, G.; Solano-Correa, Y.T.; Peppa, M.V.; Ruíz-Ordóñez, D.M.; Maysels, R.; Tuqan, N.; Polaine, X.; Montoya-Pachongo, C.; Walsh, C.; Curtis, T. A Framework for Water Security Data Gathering Strategies. Water 2022, 14, 2907. [Google Scholar] [CrossRef]
- Engle, C.R.; van Senten, J. Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes 2022, 7, 268. [Google Scholar] [CrossRef]
- Mateoc-Sîrb, N.; Albu, S.; Rujescu, C.; Ciolac, R.; Țigan, E.; Brînzan, O.; Mănescu, C.; Mateoc, T.; Milin, I.A. Sustainable Tourism Development in the Protected Areas of Maramureș, Romania: Destinations with High Authenticity. Sustainability 2022, 14, 1763. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Wangchuk, K.; Muttil, N. A Critical Review of Water Resources and Their Management in Bhutan. Hydrology 2021, 8, 31. [Google Scholar] [CrossRef]
- Al-Kalbani, M.S.; Price, M.F.; Abahussain, A.; Ahmed, M.; O’Higgins, T. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman. Water 2014, 6, 3118–3135. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Gold, A.J.; Mayer, P.M. Land Use, Climate, and Water Resources—Global Stages of Interaction. Water 2017, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Romano, O.; Akhmouch, A. Water Governance in Cities: Current Trends and Future Challenges. Water 2019, 11, 500. [Google Scholar] [CrossRef]
- Hanoon, S.K.; Abdullah, A.F.; Shafri, H.Z.M.; Wayayok, A. A Novel Approach Based on Machine Learning and Public Engagement to Predict Water-Scarcity Risk in Urban Areas. ISPRS Int. J. Geo-Inf. 2022, 11, 606. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; Del Río-Rama, M.D.l.C. Sustainable Water Resources Management: A Bibliometric Overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef]
- Giupponi, C.; Sgobbi, A. Decision Support Systems for Water Resources Management in Developing Countries: Learning from Experiences in Africa. Water 2013, 5, 798–818. [Google Scholar] [CrossRef]
- Colosimo, M.F.; Kim, H. Incorporating Innovative Water Management Science and Technology into Water Management Policy. Energ. Ecol. Environ. 2016, 1, 45–53. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Dinar, A.; Sridharan, V. Decision Support Tools for Water Quality Management. Water 2022, 14, 3644. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Zhang, G. Water Footprints and Sustainable Water Allocation. Sustainability 2016, 8, 20. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Esetlili, M.T.; Serbeş, Z.A.; Çolak Esetlili, B.; Kurucu, Y.; Delibacak, S. Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin. Water 2022, 14, 3427. [Google Scholar] [CrossRef]
- Xiao, J.; Wei, J.; Wu, M.; Cao, X. Bibliometric and Visual Analysis of Crop Water Footprint: A Widely Used Agricultural Water Resources Evaluation Method. Water 2022, 14, 2866. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products; Value of Water Research Report Series, No. 47–48; UNESCO-IHE: Delft, The Netherlands, 2010. [Google Scholar]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef]
- Wang, W.; Adamowski, J.F.; Liu, C.; Liu, Y.; Zhang, Y.; Wang, X.; Su, H.; Cao, J. The Impact of Virtual Water on Sustainable Development in Gansu Province. Appl. Sci. 2020, 10, 586. [Google Scholar] [CrossRef]
- Allan, J.A. Fortunately there are Substitutes for Water Otherwise our Hydropolitical Futures Would be Impossible. In Priorities for Water Resources Allocation and Management; Overseas Development Administration (ODA): London, UK, 1993; pp. 13–26. [Google Scholar]
- Aldaya, M.M.; Garrido, A.; Llamas, R. Water Footprint and Virtual Water Trade: The Birth and Growth of a New Research Field in Spain. Water 2020, 12, 2641. [Google Scholar] [CrossRef]
- Marrin, D.L. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California. Water 2016, 8, 497. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption; Value of Water Research Report Series No. 47; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption; Value of Water Research Report Series No. 48; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress Towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef]
- Zhang, G.P.; Hoekstra, A.Y.; Mathews, R.E. Water Footprint Assessment (WFA) for Better Water Governance and Sustainable Development. Water Resour. Ind. 2013, 1–2, 1–6. [Google Scholar] [CrossRef]
- Matohlang Mohlotsane, P.; Owusu-Sekyere, E.; Jordaan, H.; Barnard, J.H.; Van Rensburg, L.D. Water Footprint Accounting Along the Wheat-Bread Value Chain: Implications for Sustainable and Productive Water Use Benchmarks. Water 2018, 10, 1167. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A.Y. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption; Volume 1: Main Report; Daugherty Water for Food Global Institute: Faculty Publications, 2011; 85; Available online: https://digitalcommons.unl.edu/wffdocs/85 (accessed on 11 February 2023).
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, H.J.; Mekonnen, M.M. Limits to the World’s Green Water Resources for Food, Feed, Fibre, Timber and Bio-energy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Han, X.; Luo, Q.; Zhu, W.; Zhao, J. A Study on the Relationship between Income Change and the Water Footprint of Food Consumption in Urban China. Sustainability 2021, 13, 7076. [Google Scholar] [CrossRef]
- Ansorge, L.; Stejskalová, L. Water Footprint as a Tool for Selection of Alternatives (Comments on “Food Recommendations for Reducing Water Footprint”). Sustainability 2022, 14, 6317. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, K. Water Footprints of Nations. 2004. Available online: https://www.waterfootprint.org/media/downloads/Report16Vol1.pdf (accessed on 11 February 2023).
- Ababaei, B.; Etedali, H.R. Estimation of Water Footprint Components of Iran’s Wheat Production: Comparison of Global and National Scale Estimates. Environ. Process 2014, 1, 193–205. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco. PLoS ONE 2014, 9, e99705. [Google Scholar] [CrossRef]
- Humayra, S.; Hossain, L.; Hasan, S.R.; Khan, M.S. Water Footprint Calculation, Effluent Characteristics and Pollution Impact Assessment of Leather Industry in Bangladesh. Water 2023, 15, 378. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Value of Water Research Report Series No. 48; UNESCO-IHE: Delft, The Netherlands, 2010. [Google Scholar]
- Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. [Google Scholar] [CrossRef]
- Sunde, K.; Brekke, A.; Solberg, B. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review. Energies 2011, 4, 845–877. [Google Scholar] [CrossRef]
- Markov, V.; Kamaltdinov, V.; Devyanin, S.; Sa, B.; Zherdev, A.; Furman, V. Investigation of the Influence of Different Vegetable Oils as a Component of Blended Biofuel on Performance and Emission Characteristics of a Diesel Engine for Agricultural Machinery and Commercial Vehicles. Resources 2021, 10, 74. [Google Scholar] [CrossRef]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 11, 6627013. [Google Scholar] [CrossRef]
- Gheewala, S.H.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.R.; Chaiyawannakarn, N. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water 2014, 6, 1698–1718. [Google Scholar] [CrossRef]
- Gobin, A.; Kersebaum, K.C.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.D.; Deelstra, J.; et al. Variability in the Water Footprint of Arable Crop Production across European Regions. Water 2017, 9, 93. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Haq, M.A.; Khan, M.Y.A. Crop Water Requirements with Changing Climate in an Arid Region of Saudi Arabia. Sustainability 2022, 14, 13554. [Google Scholar] [CrossRef]
- Shayanmehr, S.; Porhajašová, J.I.; Babošová, M.; Sabouhi Sabouni, M.; Mohammadi, H.; Rastegari Henneberry, S.; Shahnoushi Foroushani, N. The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region. Agriculture 2022, 12, 1056. [Google Scholar] [CrossRef]
- Sachidananda, M.; Webb, D.P.; Rahimifard, S. A Concept of Water Usage Efficiency to Support Water Reduction in Manufacturing Industry. Sustainability 2016, 8, 1222. [Google Scholar] [CrossRef]
- Gallo, I.; Landro, N.; La Grassa, R.; Turconi, A. Food Recommendations for Reducing Water Footprint. Sustainability 2022, 14, 3833. [Google Scholar] [CrossRef]
- Nydrioti, I.; Grigoropoulou, H. Using the Water Footprint Concept for Water use Efficiency Labelling of Consumer Products: The Greek Experience. Environ. Sci. Pollut. Res. 2022, 30, 19918–19930. [Google Scholar] [CrossRef]
- Pocol, C.B.; Pinoteau, M.; Amuza, A.; Burlea-Schiopoiu, A.; Glogovețan, A.-I. Food Waste Behavior among Romanian Consumers: A Cluster Analysis. Sustainability 2020, 12, 9708. [Google Scholar] [CrossRef]
- Kasza, G.; Veflen, N.; Scholderer, J.; Münter, L.; Fekete, L.; Csenki, E.Z.; Dorkó, A.; Szakos, D.; Izsó, T. Conflicting Issues of Sustainable Consumption and Food Safety: Risky Consumer Behaviors in Reducing Food Waste and Plastic Packaging. Foods 2022, 11, 3520. [Google Scholar] [CrossRef]
- Żukiewicz, K.; Dudziak, A.; Słowik, T.; Mazur, J.; Łusiak, P. Analysis of the Problem of Waste in Relation to Food Consumers. Sustainability 2022, 14, 11126. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Łaba, S.; Szczepański, K. Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability 2021, 13, 6227. [Google Scholar] [CrossRef]
- Jones-Garcia, E.; Bakalis, S.; Flintham, M. Consumer Behaviour and Food Waste: Understanding and Mitigating Waste with a Technology Probe. Foods 2022, 11, 2048. [Google Scholar] [CrossRef]
- Skawińska, E.; Zalewski, R.I. Combining the Water–Energy–Food and Food Waste–Food Loss–Food Security Nexuses to Reduce Resource Waste. Energies 2022, 15, 5866. [Google Scholar] [CrossRef]
- Badea, L.; Șerban-Oprescu, G.L.; Dedu, S.; Piroșcă, G.I. The Impact of Education for Sustainable Development on Romanian Economics and Business Students’ Behavior. Sustainability 2020, 12, 8169. [Google Scholar] [CrossRef]
- Haider, M.; Shannon, R.; Moschis, G.P. Sustainable Consumption Research and the Role of Marketing: A Review of the Literature (1976–2021). Sustainability 2022, 14, 3999. [Google Scholar] [CrossRef]
- Reyes, M.F.; Trifunović, N.; Sharma, S.; Behzadian, K.; Kapelan, Z.; Kennedy, M.D. Mitigation Options for Future Water Scarcity: A Case Study in Santa Cruz Island (Galapagos Archipelago). Water 2017, 9, 597. [Google Scholar] [CrossRef]
- Atay, I.; Saladié, Ò. Water Scarcity and Climate Change in Mykonos (Greece): The Perceptions of the Hospitality Stakeholders. Tour. Hosp. 2022, 3, 765–787. [Google Scholar] [CrossRef]
- Botelho, G.; Mello, M.; Kiperstok, A.; Oliveira-Esquerre, K. A Framework for Archive Demand Management Strategies: A Pilot Study on Water Use in a Low-Income Brazilian Area. Sustainability 2022, 14, 406. [Google Scholar] [CrossRef]
- Ferasso, M.; Bares, L.; Ogachi, D.; Blanco, M. Economic and Sustainability Inequalities and Water Consumption of European Union Countries. Water 2021, 13, 2696. [Google Scholar] [CrossRef]
- Hunt, D.V.L.; Shahab, Z. Sustainable Water Use Practices: Understanding and Awareness of Masters Level Students. Sustainability 2021, 13, 10499. [Google Scholar] [CrossRef]
- Qasemipour, E.; Abbasi, A. Virtual Water Flow and Water Footprint Assessment of an Arid Region: A Case Study of South Khorasan Province, Iran. Water 2019, 11, 1755. [Google Scholar] [CrossRef]
- Rahman, M.M.; Akter, R.; Abdul Bari, J.B.; Hasan, M.A.; Rahman, M.S.; Abu Shoaib, S.; Shatnawi, Z.N.; Alshayeb, A.F.; Shalabi, F.I.; Rahman, A.; et al. Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability 2022, 14, 14482. [Google Scholar] [CrossRef]
Type of Product | Average Gross Annual Food Consumption, kg Inhabitant−1 |
---|---|
Grains and derived foods | 204.4 |
| 160.5 |
| 38.8 |
| 0.5 |
| 4.6 |
Potatoes | 93.4 |
Beans | 3.6 |
Vegetables and derived foods | 167.8 |
| 42.1 |
| 20.7 |
| 43.6 |
| 14.0 |
| 47.4 |
Melons | 23.0 |
Fruit | 107.6 |
| 29.1 |
| 7.9 |
| 4.1 |
| 4.6 |
| 7.9 |
| 14.5 |
| 39.5 |
Sugar and derived foods | 25.5 |
Milk and derived foods | 252.6 |
Eggs | 11.8 |
Meat and derived foods | 74.1 |
| 5.4 |
| 37.3 |
| 2.6 |
| 28.0 |
| 0.8 |
Edible organs | 3.3 |
Fish and derived foods | 6.3 |
Vegetable oils | 15.6 |
Porcine fats | 2.4 |
Butter | 1.5 |
Product Type | Water Footprint, m3 ton−1 | |||
---|---|---|---|---|
Green | Blue | Gray | Total | |
Grains and derived foods | ||||
| 1277 | 342 | 207 | 1827 |
| 947 | 81 | 194 | 1222 |
| 1645 | 38 | 113 | 1795 |
| 1146 | 341 | 187 | 1673 |
Potatoes | 191 | 33 | 63 | 287 |
Beans | 3945 | 125 | 983 | 5053 |
Vegetables and derived foods | ||||
| 108 | 63 | 43 | 214 |
| 192 | 88 | 65 | 345 |
| 181 | 26 | 73 | 280 |
| 106 | 28 | 61 | 195 |
| 195 | 27 | 104 | 326 |
Melons | 147 | 25 | 63 | 235 |
Fruit | ||||
| 561 | 133 | 127 | 822 |
| 1570 | 188 | 422 | 2180 |
| 961 | 531 | 112 | 1604 |
| 583 | 188 | 139 | 910 |
| 425 | 97 | 87 | 609 |
| 370 | 148 | 114 | 632 |
| 660 | 97 | 33 | 790 |
Processed sugar | 1184 | 487 | 111 | 1782 |
Milk and derived foods | 1425 | 51 | 57 | 1533 |
Eggs | 2579 | 106 | 107 | 2792 |
Meat and derived foods | ||||
| 17,938 | 541 | 614 | 19,093 |
| 4443 | 276 | 227 | 4946 |
| 8113 | 526 | 162 | 8801 |
| 3666 | 166 | 147 | 3979 |
| 4299 | 272 | 219 | 4790 |
Edible organs | 476 | 28 | 24 | 528 |
Fish and derived foods | 1638 | 178 | 158 | 1974 |
Vegetable oils | 7182 | 667 | 366 | 8215 |
Porcine fats | 3666 | 166 | 147 | 3979 |
Butter | 6671 | 239 | 269 | 7179 |
Product Type | Water Footprint Per Capita, m3 Inhabitant−1 Year−1 | |||
---|---|---|---|---|
Green | Blue | Gray | Total | |
Grains and derived foods | 247.79 | 59.62 | 41.67 | 349.24 |
| 204.96 | 54.89 | 33.22 | 293.23 |
| 36.74 | 3.14 | 753 | 47.41 |
| 0.82 | 0.02 | 0.06 | 0.9 |
| 5.27 | 1.57 | 0.86 | 7.7 |
Potatoes | 17.84 | 3.08 | 5.88 | 26.81 |
Beans | 14.20 | 0.45 | 3.54 | 18.19 |
Vegetables and derived foods | 27.13 | 7.27 | 12.12 | 46.52 |
| 4.55 | 2.65 | 1.81 | 9.01 |
| 3.97 | 1.82 | 1.35 | 7.14 |
| 7.89 | 1.13 | 3.18 | 12.21 |
| 1.48 | 0.39 | 0.85 | 2.73 |
| 9.24 | 1.28 | 4.93 | 15.45 |
Melons | 3.38 | 0.57 | 1.45 | 5.41 |
Fruit | 70.15 | 15.15 | 11.13 | 96.43 |
| 16.33 | 3.87 | 3.7 | 23.92 |
| 12.4 | 1.49 | 3.33 | 17.22 |
| 3.94 | 2.18 | 0.46 | 6.58 |
| 2.68 | 0.86 | 0.64 | 4.19 |
| 3.36 | 0.77 | 0.69 | 4.81 |
| 5.37 | 2.15 | 1.65 | 9.16 |
| 26.07 | 3.83 | 1.3 | 31.21 |
Processed sugar | 30.19 | 12.42 | 2.83 | 45.44 |
Milk and derived foods | 359.95 | 12.88 | 14.4 | 387.24 |
Eggs | 30.43 | 1.25 | 1.26 | 32.95 |
Meat and derived foods | 389.77 | 19.45 | 16.51 | 425.73 |
| 96.87 | 2.92 | 3.32 | 103.10 |
| 165.72 | 10.29 | 8.47 | 184.49 |
| 21.09 | 1.37 | 0.42 | 22.88 |
| 102.65 | 4.65 | 4.12 | 111.41 |
| 3.44 | 0.22 | 0.18 | 3.83 |
Edible organs | 1.57 | 0.09 | 0.08 | 1.74 |
Fish and derived foods | 10.32 | 1.12 | 0.99 | 12.44 |
Vegetable oils | 112.04 | 10.41 | 5.71 | 128.15 |
Porcine fats | 8.8 | 0.4 | 0.35 | 9.55 |
Butter | 10.01 | 0.36 | 0.4 | 10.77 |
Food Consumption | 1333.57 (83.50%) | 144.52 (9.04%) | 119.18 (7.46%) | 1597.27 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, T.M.; Mihăiescu, T.; Odagiu, A.; Paulette, L. Effects of the Eating Habits of Romanian Residents on the Water Footprint. Water 2023, 15, 1622. https://doi.org/10.3390/w15081622
Rusu TM, Mihăiescu T, Odagiu A, Paulette L. Effects of the Eating Habits of Romanian Residents on the Water Footprint. Water. 2023; 15(8):1622. https://doi.org/10.3390/w15081622
Chicago/Turabian StyleRusu, Teodora Maria, Tania Mihăiescu, Antonia Odagiu, and Laura Paulette. 2023. "Effects of the Eating Habits of Romanian Residents on the Water Footprint" Water 15, no. 8: 1622. https://doi.org/10.3390/w15081622
APA StyleRusu, T. M., Mihăiescu, T., Odagiu, A., & Paulette, L. (2023). Effects of the Eating Habits of Romanian Residents on the Water Footprint. Water, 15(8), 1622. https://doi.org/10.3390/w15081622