Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Methods
2.3.1. Construction of the SCWDI
2.3.2. Morlet Wavelet Analysis
2.3.3. Other Methods
3. Results
3.1. Applicability Analysis of the SCWDI
3.1.1. Feasibility of SCWDI Construction
3.1.2. Comparison of Different Drought Indexes in Time Series
3.1.3. Comparison of Different Drought Indexes in Space
3.2. Spatial and Temporal Variation in Spring Maize Drought in Songnen Plain
3.2.1. Temporal Variation in Spring Maize Drought
3.2.2. Spatial Variation in Spring Maize Drought
3.3. Periodic Variation in Spring Maize Drought in Songnen Plain
4. Discussion
5. Conclusions
- (1)
- It was feasible to construct the standardized crop water deficit index (SCWDI) by combining the ideas of CWDI and SPEI. Compared with the commonly used drought indexes (Pa, MI, SPI, SPEI, CWDI, and CWDIa), SCWDI had great advantages in drought monitoring of spring maize.
- (2)
- In the whole growth stage of spring maize, the change trend of SCWDI in Songnen Plain was small in the temporal series (−0.012/10a). Spatially, the drought trend of spring maize was mainly decreasing (−0.14~0/10a), while the drought of spring maize in the south and southwest showed an increasing trend (0~0.21/10a). The drought frequency of spring maize in each growth stage was mainly light drought in most regions. In the whole growth stage, the moderate drought frequency in the central and southern regions was relatively high and the severe drought frequency in the northwest and southeast was relatively high.
- (3)
- In terms of periodicity, in the whole growth stage of spring maize, the three main drought cycles in Songnen Plain were 29 years, 10 years, and 4 years. In the next few years, the drought of spring maize in Songnen Plain was controlled by the first main cycle, and the drought years may increase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ju, J.; Wu, C.; Yeh, J.F.; Dai, H.; Hu, B.X. Global precipitation-related extremes at 1.5 °C and 2 °C of global warming targets: Projection and uncertainty assessment based on the CESM-LWR experiment. Atmos. Res. 2021, 264, 105868. [Google Scholar] [CrossRef]
- Wu, J.; Han, Z.; Li, R.; Xu, Y.; Shi, Y. Changes of extreme climate events and related risk exposures in Huang-Huai-Hai river basin under 1.5–2 °C global warming targets based on high resolution combined dynamical and statistical downscaling dataset. Int. J. Climatol. 2021, 41, 1383–1401. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, Z.; Ma, G.; Wang, W.; Dai, J.; Zhang, M.; Wei, Z.; Liu, Z. Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agric. Water Manag. 2022, 263, 107447. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Y.; Zhai, P. IPCC special report SRCCL’s new cognition and Enlightenment on climate change and food security. Res. Prog. Clim. Chang. 2020, 16, 13. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, S.; Xia, J.; Zhan, C.; Cai, W.; Wang, W.; Luo, X.; Chen, N.; Li, J. Analysis of drought and flood alternation and its driving factors in the Yangtze River Basin under climate change. Atmos. Res. 2022, 270, 106087. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Popat, E.; Herbert, C.; Dll, P. Analyzing the Impact of Streamflow Drought on Hydroelectricity Production: A Global-Scale Study. Water Resour. Res. 2021, 57, e2020WR028087. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Li, Z.; Chang, J.; Guo, A.; Zhou, K. Characterizing spatio-temporal patterns of multi-scalar drought risk in mainland China. Ecol. Indic. 2021, 131, 108189. [Google Scholar] [CrossRef]
- Kamali, B.; Jahanbakhshi, F.; Dogaru, D.; Dietrich, J.; Nendel, C.; Aghakouchak, A. Probabilistic modeling of crop-yield loss risk under drought: A spatial showcase for sub-Saharan Africa. Environ. Res. Lett. 2022, 17, 024028. [Google Scholar] [CrossRef]
- Tian, F.; Wu, J.; Liu, L.; Leng, S.; Shen, Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sens. 2019, 12, 54. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Schwartz, C.; Ellenburg, W.L.; Mishra, V.; Mayer, T.; Griffin, R.; Qamer, F.; Matin, M.; Tadesse, T. A statistical evaluation of Earth-observation-based composite drought indices for a localized assessment of agricultural drought in Pakistan. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102646. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, J.; Wang, Z.; Hong, S.; Yun, S.U. Vulnerability Identification and Assessment of Agriculture Drought Disaster in China. Adv. Earth Sci. 2006, 21, 161–169. [Google Scholar] [CrossRef]
- Ha, T.V.; Huth, J.; Bachofer, F.; Kuenzer, C. A Review of Earth Observation-Based Drought Studies in Southeast Asia. Remote Sens. 2022, 14, 3763. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Huang, J. Policy support, social capital, and farmers’ adaptation to drought in China. Glob. Environ. Chang. 2014, 24, 193–202. [Google Scholar] [CrossRef]
- Kebede, A.; Kang, M.S.; Bekele, E. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Adv. Agron. 2019, 156, 265–314. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, D.H.; Weng, B.S.; Feng, J.; Shi, X. Response to drought disaster in North America and their experiences to China. Arid Land Geogr. 2012, 35, 332–338. [Google Scholar] [CrossRef]
- Han, R.; Li, Z.; Li, Z.; Han, Y. Spatial–Temporal Assessment of Historical and Future Meteorological Droughts in China. Atmosphere 2021, 12, 787. [Google Scholar] [CrossRef]
- Yu, M.; Liu, X.; Wei, L.; Li, Q.; Zhang, J.; Wang, G. Drought Assessment by a Short-/Long-Term Composited Drought Index in the Upper Huaihe River Basin, China. Adv. Meteorol. 2015, 2016, 7986568. [Google Scholar] [CrossRef]
- Noureldeen, N.; Mao, K.; Mohmmed, A.; Yuan, Z.; Yang, Y. Spatiotemporal Drought Assessment over Sahelian Countries from 1985 to 2015. J. Meteorol. Res. 2020, 34, 104–118. [Google Scholar] [CrossRef]
- Xie, W.; Sheng, W.; Tang, W.; Rong, W.; Dai, J. Comparative Analysis on the Applicability of Drought Indexes in the Huaihe River Basin. J. Appl. Meteorol. Sci. 2014, 25, 176–184. [Google Scholar] [CrossRef]
- Sharafati, A.; Nabaei, S.; Shahid, S. Spatial assessment of meteorological drought features over different climate regions in Iran. Int. J. Climatol. 2020, 40, 1864–1884. [Google Scholar] [CrossRef]
- Han, H.Q.; Bai, Y.M.; Zhang, Y.J.; Chen, M.L. Comparative Study on Applicability of Four Drought Indexes in Guizhou Province. J. Qiannan Norm. Univ. Natl. 2019, 39, 45–49. [Google Scholar]
- Zhang, J.; Liu, Z.; Wang, J.; He, Y.; Luo, H. Construction and validation of comprehensive drought monitoring model in Southwest China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 102–107. [Google Scholar] [CrossRef]
- Kalisa, W.; Zhang, J.; Igbawua, T.; Ujoh, F.; Ebohon, O.J.; Namugize, J.N.; Yao, F. Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agric. Water Manag. 2020, 237, 106195. [Google Scholar] [CrossRef]
- Begueria-Portugues, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M.; López-Moreno, J.I.; Kenawy, A.E. The Standardized Precipitation-Evapotranspiration Index (SPEI): A multiscalar drought index. In Proceedings of the EMS Annual Meeting 2010, Zurich, Switzerland, 13–17 September 2010. [Google Scholar]
- Li, W.G.; Yi, X.; Hou, M.T.; Chen, H.L.; Chen, Z.L. Standardized precipitation evapotranspiration index shows drought trend in China. Chin. J. Eco-Agric. 2012, 5, 643–649. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhou, Y.; Wang, F.; Li, W.; Liu, W. Regionalization and Spatiotemporal Variation of Drought in China Based on Standardized Precipitation Evapotranspiration Index (1961–2013). Adv. Meteorol. 2015, 2015, 950262. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, Z.; Islam, A.R.M.T.; You, X.; Zhang, X. Spatiotemporal characteristics and risk assessment of agricultural drought disasters during the winter wheat-growing season on the Huang-Huai-Hai Plain, China. Theor. Appl. Climatol. 2021, 143, 1393–1407. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Wang, H.; Wang, Y. Spatiotemporal difference analysis of drought on wine grape in Ningxia based on crop water deficit index. J. Nat. Disasters 2014, 23, 203–211. [Google Scholar] [CrossRef]
- Mu, J.; Qiu, M.; Gu, Y.; Ren, J.; Liu, Y. Applicability of five drought indices for agricultural drought evaluation in Jilin Province, China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2018, 29, 2624–2632. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, L.; Zhang, H.; Jiang, L.; Zhang, A.; Pan, T. Effect of farmland expansion on drought over the past century in Songnen Plain, Northeast China. J. Geogr. Sci. 2020, 30, 439–454. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Lu, X. Vegetation Change and Its Response to Climate Change between 2000 and 2016 in Marshes of the Songnen Plain, Northeast China. Sustainability 2020, 12, 3569. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Li, T.; Liu, S. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. J. Hydrol. 2020, 588, 125097. [Google Scholar] [CrossRef]
- Jian-Zhai, W.U.; Zhang, J.; Zhang-Ming, G.E.; Xing, L.W.; Kong, F.T. Impact of climate change on maize yield in China from 1979 to 2016. J. Integr. Agric. 2021, 20, 289–299. [Google Scholar]
- Kang, L.; Zhang, H. Comprehensive study on agricultural drought situation in five major grain producing areas of China. Chin. J. Ecol. Agric. 2014, 22, 10. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, K.; Liu, Y.; Guo, R.; Chen, L. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agric. Syst. 2021, 189, 103040. [Google Scholar] [CrossRef]
- Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. Adapting maize production to drought in the Northeast Farming Region of China. Eur. J. Agron. 2016, 77, 47–58. [Google Scholar] [CrossRef]
- Kang, H.; Na, X.; Zang, S. Evaluation of ecological service function of Songnen Plain Wetland from 1980 to 2010. Remote Sens. Land Resour. 2017, 29, 8. [Google Scholar]
- Qiao, S.; Zhang, L.; Yang, P.; Zhang, X. Analysis on the change of crop water content in the growing season of Songnen Plain from 2000 to 2012. Prog. Meteorol. Sci. Technol. 2015, 5, 66–69. [Google Scholar]
- Tang, W.; Liu, S.; Kang, P.; Peng, X.; Li, Y.; Guo, R.; Jia, J.; Liu, M.; Zhu, L. Quantifying the lagged effects of climate factors on vegetation growth in 32 major cities of China. Ecol. Indic. 2021, 132, 108290. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, X.; Liu, J.; Chen, P. Study on the evolution of drought and flood trend of spring corn in Northeast China in recent 60 years. Chin. J. Ecol. Agric. 2020, 28, 12. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zo, L.; Qin, W. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Carmona, F.; Rivas, R.; Kruse, E. Estimating daily net radiation in the FAO Penman–Monteith method. Theor. Appl. Climatol. 2017, 129, 89–95. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, D.; Zhao, Y.; Tian, G.; An, W. Changes of surface moisture and dryness in Shanxi Province under the background of climate warming. Geogr. Arid Area 2020, 43, 9. [Google Scholar]
- Wang, L.; Wang, T.; Li, Q.; Wu, D.; Hu, Z.; Lu, Y.; Zhang, Y. Spatial and temporal characteristics of winter wheat drought in Henan Province Based on crop water deficit index. Jiangsu Agric. Sci. 2019, 47, 6. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mahmoudi, M.R. Assessment of the effect of PET calculation method on the Standardized Precipitation Evapotranspiration Index (SPEI). Arab. J. Geosci. 2020, 13, 182. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Wang, W.; Quan, Q.; Chen, X.; Yin, H.; Zhou, Q.; Xu, K. Drought characteristics in Inner Mongolia Based on precipitation anomaly percentage. Study Arid Area 2019, 36, 10. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Huang, W.; Zhang, Y.; Ma, J. Spatial and temporal distribution characteristics of seasonal drought in Southwest China based on relative humidity index. Trans. Chin. Soc. Agric. Eng. 2012, 28, 9. [Google Scholar] [CrossRef]
- Li, C.; You, S.; Wu, Y.; Wang, Y. Application of improved crop water deficit index to drought disaster monitoring of spring maize in Northeast China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 11. [Google Scholar]
- Pang, D.; Ren, C.; Wang, Y.; Cui, F.; Liu, H.; Tang, C. Construction and evaluation of maize water suitability index based on yield loss. J. Nat. Disasters 2020, 29, 10. [Google Scholar]
- Musonda, B.; Jing, Y.; Iyakaremye, V.; Ojara, M. Analysis of Long-Term Variations of Drought Characteristics Using Standardized Precipitation Index over Zambia. Atmosphere 2020, 11, 1268. [Google Scholar] [CrossRef]
- Nicolay, S.; Mabille, G.; Fettweis, X.; Erpicum, M. 30 and 43 months period cycles found in air temperature time series using the Morlet wavelet. Clim. Dyn. 2009, 33, 1117–1129. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Islam, H.M.T.; Shahid, S.; Khatun, M.K.; Almoajel, A.M. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. J. Environ. Manag. 2021, 289, 112505. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Teshome, H.; Tesfaye, K.; Dechassa, N.; Tana, T.; Huber, M. Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia. Atmosphere 2022, 13, 67. [Google Scholar] [CrossRef]
- Mondol, M.; Zhu, X.; Dunkerley, D.; Henley, B.J. Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI). Agric. Water Manag. 2021, 255, 107001. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Fischer, M.; Balek, J.; Štěpánek, P.; Zahradníček, P.; Semerádová, D.; Bláhová, M. Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes. Atmosphere 2021, 12, 913. [Google Scholar] [CrossRef]
Growth Stage | Drought Grade | Drought Range |
---|---|---|
A1 | Light drought | Zhaoyuan, Lishu |
Moderate drought | Songyuan, Changling | |
A2 | Light drought | Zhaoyuan, Lishu |
Moderate drought | Changling | |
A3 | Light drought | Qinggang, Yushu, Shuangyang |
Moderate drought | Songyuan, Changling, Lishu | |
A4 | Moderate drought | Wudalianchi, Qianguo, Qing’an, Longjiang, Wuchang, Suiling |
Severe drought | Fuyu, Tailai, Songyuan, Zhaoyuan, Changling | |
A5 | Light drought | Wuchang |
Moderate drought | Songyuan | |
Severe drought | Zhaoyuan, Changling, Fuyu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Z.; Wu, B. Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China. Water 2023, 15, 1618. https://doi.org/10.3390/w15081618
Pei Z, Wu B. Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China. Water. 2023; 15(8):1618. https://doi.org/10.3390/w15081618
Chicago/Turabian StylePei, Zhifang, and Bin Wu. 2023. "Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China" Water 15, no. 8: 1618. https://doi.org/10.3390/w15081618
APA StylePei, Z., & Wu, B. (2023). Spatial-Temporal Characteristics of Spring Maize Drought in Songnen Plain, Northeast China. Water, 15(8), 1618. https://doi.org/10.3390/w15081618