Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Measurements of Water Quality Parameters
2.3. UV-Visible Absorption Spectroscopy
2.4. EEM-PARAFAC Analysis
2.5. Calculations of DOM Fluorescence Parameters
2.6. FT-IR Spectroscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Seasonal and Spatial Variations in Water Quality
3.2. UV-Visible Spectra
3.3. Characteristics of EEM-PARAFAC Components
3.4. Fluorescence Parameters
3.5. FT-IR Spectra
3.6. PCA and Correlation Coefficient Matrix Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation—Emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Cilenti, A.; Provenzano, M.R.; Senesi, N. Characterization of dissolved organic matter from saline soils by fluorescence spectroscopy. Environ. Chem. Lett. 2005, 3, 53–56. [Google Scholar] [CrossRef]
- Jiang, F.H.; Yang, B.J.; Lee, F.S.C.; Wang, X.R.; Cao, X. Multivariate analysis of fluorescence and source identification of dissolved organic matter in Jiaozhou Bay, China. Acta Oceanol. Sin. 2009, 28, 60–72. [Google Scholar]
- Spencer, R.G.M.; Aiken, G.R.; Wickland, K.P.; Striegl, R.G.; Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycle 2008, 22, GB4002. [Google Scholar] [CrossRef]
- Cui, H.; Wang, J.X.; Liu, T.; Qu, X.L. Spatial and seasonal patterns of dissolved organic matter hydrophobicity in Lake Taihu revealed by the aqueous two-phase system. Sci. Total Environ. 2021, 776, 145892. [Google Scholar] [CrossRef]
- Fan, C.H.; Chang, M.; Zhang, Y.C. Spectral Characteristics of Dissolved Organic Matter (DOM) Derived from Water and Sediment in Normal Flow Period of the Intersection Zone of Jing River and Wei River. Spectrosc. Spectr. Anal. 2016, 36, 2863–2869. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhu, Y.R.; Liu, L.Z.; He, Z.Q.; Giesy, J.P.; Bai, Y.C.; Sun, F.H.; Wu, F.C. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy. Environ. Pollut. 2018, 234, 726–734. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhu, Y.R.; Wu, F.C.; Meng, W.; He, Z.Q.; Giesy, J.P. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy. Sci. Total Environ. 2016, 566, 1398–1409. [Google Scholar] [CrossRef]
- Liu, S.S.; He, Z.Q.; Tang, Z.; Liu, L.Z.; Hou, J.W.; Li, T.T.; Zhang, Y.H.; Shi, Q.; Giesy, J.P.; Wu, F.C. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis. Sci. Total Environ. 2020, 703, 134764. [Google Scholar] [CrossRef]
- Hansen, A.M.; Kraus, T.E.C.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef]
- Bernier, M.H.; Levy, G.J.; Fine, P.; Borisover, M. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma 2013, 209, 233–240. [Google Scholar] [CrossRef]
- Peng, N.; Wang, K.F.; Tu, N.Y.; Liu, Y.; Li, Z.L. Fluorescence regional integration combined with parallel factor analysis to quantify fluorescencent spectra for dissolved organic matter released from manure biochars. RSC Adv. 2020, 10, 31502–31510. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.M.; Shin, J.K.; Hur, J. Multivariate analysis for spatial distribution of dissolved organic matters in a large river-type dam reservoir. Environ. Monit. Assess. 2011, 183, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Song, Y.H.; Du, E.D.; Yang, N.; Peng, J.F.; Liu, R.X. Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers. Environ. Sci. Pollut. Res. 2016, 23, 10644–10655. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.N.; Wu, Y.; Bao, H.Y.; Gan, S.C.; Zhang, J. Sources, Transport, and Transformation of Dissolved Organic Matter in a Large River System: Illustrated by the Changjiang River, China. J. Geophys. Res.-Biogeosci. 2019, 124, 3881–3901. [Google Scholar] [CrossRef]
- Chen, S.; Lu, Y.; Dash, P.; Das, P.; Li, J.; Capps, K.; Majidzadeh, H.; Elliott, M. Hurricane pulses: Small watershed exports of dissolved nutrients and organic matter during large storms in the Southeastern USA. Sci. Total Environ. 2019, 689, 232–244. [Google Scholar] [CrossRef]
- Li, S.Y.; Luo, J.C.; Xu, Y.J.; Zhang, L.Q.; Ye, C. Hydrological seasonality and nutrient stoichiometry control dissolved organic matter characterization in a headwater stream. Sci. Total Environ. 2022, 807, 150843. [Google Scholar] [CrossRef]
- Hawkes, J.A.; Radoman, N.; Bergquist, J.; Wallin, M.B.; Tranvik, L.J.; Lofgren, S. Regional diversity of complex dissolved organic matter across forested hemiboreal headwater streams. Sci. Rep. 2018, 8, 16060. [Google Scholar] [CrossRef]
- Huang, W.; McDowell, W.H.; Zou, X.M.; Ruan, H.H.; Wang, J.S.; Ma, Z.L. Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China. Appl. Geochem. 2015, 52, 67–75. [Google Scholar] [CrossRef]
- Evans, C.D.; Monteith, D.T.; Cooper, D.M. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 2005, 137, 55–71. [Google Scholar] [CrossRef]
- Blanchet, C.C.; Arzel, C.; Davranche, A.; Kahilainen, K.K.; Secondi, J.; Taipale, S.; Lindberg, H.; Loehr, J.; Manninen-Johansen, S.; Sundell, J.; et al. Ecology and extent of freshwater browning-What we know and what should be studied next in the context of global change. Sci. Total Environ. 2022, 812, 152420. [Google Scholar] [CrossRef] [PubMed]
- Specchiulli, A.; Cilenti, L.; D’Adamo, R.; Fabbrocini, A.; Guo, W.; Huang, L.; Luglie, A.; Padedda, B.M.; Scirocco, T.; Magni, P. Dissolved organic matter dynamics in Mediterranean lagoons: The relationship between DOC and CDOM. Mar. Chem. 2018, 202, 37–48. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Choi, J.H. Changes in the Dissolved Organic Matter Characteristics Released from Sediment According to Precipitation in the Namhan River with Weirs: A Laboratory Experiment. Int. J. Environ. Res. Public Health 2022, 19, 4958. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Carr, N.; Davis, C.E.; Blackbird, S.; Daniels, L.R.; Preece, C.; Woodward, M.; Mahaffey, C. Seasonal and spatial variability in the optical characterstics of DOM in a temperate shelf sea. Prog. Oceanogr. 2019, 177, 101929. [Google Scholar] [CrossRef]
- Lu, Y.H.; Edmonds, J.W.; Yamashita, Y.; Zhou, B.; Jaegge, A.; Baxley, M. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dyn. 2015, 65, 17–32. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Meth. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Cory, R.M.; McKnight, D.M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 8142–8149. [Google Scholar] [CrossRef] [PubMed]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zheng, B.; Song, Y.; Qin, Y. Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM. Aquat. Sci. 2011, 73, 103–112. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Abdulla, H.A.N.; Minor, E.C.; Dias, R.F.; Hatcher, P.G. Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and C-13 NMR. Geochim. Cosmochim. Acta 2010, 74, 3815–3838. [Google Scholar] [CrossRef]
- Hensgens, G.; Laudon, H.; Peichl, M.; Gil, I.A.; Zhou, Q.; Berggren, M. The role of the understory in litter DOC and nutrient leaching in boreal forests. Biogeochemistry 2020, 149, 87–103. [Google Scholar] [CrossRef]
- Franklin, H.M.; Carroll, A.R.; Chen, C.R.; Maxwell, P.; Burford, M.A. Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter. Sci. Total Environ. 2020, 703, 134530. [Google Scholar] [CrossRef]
- Zheng, L.C.; Song, Z.F.; Meng, P.P.; Fang, Z.Q. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China. Environ. Sci. Pollut. Res. 2016, 23, 7462–7469. [Google Scholar] [CrossRef]
- Ates, N.; Kitis, M.; Yetis, U. Formation of chlorination by-products. in waters with low SUVA-correlations with SUVA and differential UV spectroscopy. Water Res. 2007, 41, 4139–4148. [Google Scholar] [CrossRef]
- Gao, J.K.; Liang, C.L.; Shen, G.Z.; Lv, J.; Wu, H.M. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere 2017, 176, 108–116. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Harun, S.; Baker, A.; Bradley, C.; Pinay, G. Spatial and seasonal variations in the composition of dissolved organic matter in a tropical catchment: The Lower Kinabatangan River, Sabah, Malaysia. Environ. Sci.-Process Impacts 2016, 18, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Parlanti, E.; Worz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Zhao, Z.; Gonsior, M.; Luek, J.; Timko, S.; Ianiri, H.; Hertkorn, N.; Schmitt-Kopplin, P.; Fang, X.T.; Zeng, Q.L.; Jiao, N.Z.; et al. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat. Commun. 2017, 8, 15284. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Q.; Ding, J.; Li, L.; Wang, K.; Zhou, H.; Jiang, M.; Wei, J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. Environ. Res. 2023, 217, 114857. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, D.H.; Lee, B.M.; Hur, J. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification. Chemosphere 2015, 127, 222–228. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, X.Y.; Zhang, X.; Meng, Q.J.; Gao, F.J.; Zhang, Y. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. Chemosphere 2017, 180, 531–539. [Google Scholar] [CrossRef]
- Lin, H.; Xu, H.C.; Cai, Y.H.; Belzile, C.; Macdonald, R.W.; Guo, L.D. Dynamic changes in size-fractionated dissolved organic matter composition in a seasonally ice-covered Arctic River. Limnol. Oceanogr. 2021, 66, 3085–3099. [Google Scholar] [CrossRef]
- Yamashita, Y.; Boyer, J.N.; Jaffe, R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Cont. Shelf Res. 2013, 66, 136–144. [Google Scholar] [CrossRef]
- Wu, Y.W.; Li, Y.J.; Lv, J.J.; Xi, B.D.; Zhang, L.Y.; Yang, T.X.; Li, G.W.; Li, C.L.; Liu, H.L. Influence of sediment DOM on environmental factors in shallow eutrophic lakes in the middle reaches of the Yangtze River in China. Environ. Earth Sci. 2017, 76, 142. [Google Scholar] [CrossRef]
Component No. | Type | Tradition Peak [45] | Peak Max Position Ex/Em | Season |
---|---|---|---|---|
C1 | UVC humic-like | Peak A: 260/380–460 Peak C: 350/420–480 | 275 nm/490 nm | Dry season |
265 nm (360 nm)/460 nm | Wet season | |||
C2 | UVA humic-like | Peak A: 260/380–460 | 240 nm (345 nm)/450 nm | Dry season |
245 nm/450 nm | Wet season | |||
C3 | Marine humic-like | Peak M: 312/380–420 | 230 nm/415 nm | Dry season |
225 nm (280 nm)/420 nm | Wet season | |||
C4 | Tryptophan-like | Peak T: 275/340 | 210 nm (275 nm)/385 nm | Dry season |
205 nm (280 nm)/390 nm | Wet season |
Sampling Sites | Dry Season | Wet Season | ||||
---|---|---|---|---|---|---|
FI | HIX | BIX | FI | HIX | BIX | |
H1 | - | - | - | 1.44 | 11.22 | 0.52 |
H2 | - | - | - | 1.45 | 9.74 | 0.52 |
H3 | - | - | - | 1.45 | 9.4 | 0.55 |
H4 | 1.51 | 6.78 | 0.56 | 1.45 | 7.96 | 0.55 |
H5 | 1.52 | 5.59 | 0.64 | 1.48 | 7.6 | 0.56 |
H6 | 1.55 | 4.94 | 0.66 | 1.51 | 7.56 | 0.57 |
H7 | 1.55 | 4.78 | 0.65 | 1.51 | 7.37 | 0.61 |
H8 | 1.60 | 5.08 | 0.63 | 1.48 | 7.31 | 0.59 |
H9 | 1.59 | 5.71 | 0.72 | 1.52 | 7.13 | 0.59 |
H10 | 1.52 | 4.31 | 0.68 | 1.52 | 4.31 | 0.59 |
H11 | 1.53 | 5.20 | 0.70 | 1.47 | 6.75 | 0.61 |
H12 | 1.51 | 4.57 | 0.69 | 1.44 | 8.65 | 0.56 |
H13 | 1.61 | 4.27 | 0.69 | 1.45 | 6.94 | 0.54 |
H14 | 1.54 | 4.19 | 0.73 | 1.47 | 5.22 | 0.59 |
H15 | 1.55 | 5.03 | 0.67 | 1.52 | 6.06 | 0.61 |
H16 | 1.67 | 5.35 | 0.74 | 1.44 | 6.38 | 0.61 |
H17 | 1.68 | 6.53 | 0.71 | 1.53 | 7.73 | 0.65 |
H18 | 1.66 | 6.11 | 0.78 | 1.58 | 8.99 | 0.63 |
H19 | 1.64 | 5.82 | 0.75 | 1.48 | 6.75 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Meng, F.; Wang, Y.; Zhang, L.; Xue, H.; Liang, Z.; Zhang, J. Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China. Water 2023, 15, 1579. https://doi.org/10.3390/w15081579
Zhang D, Meng F, Wang Y, Zhang L, Xue H, Liang Z, Zhang J. Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China. Water. 2023; 15(8):1579. https://doi.org/10.3390/w15081579
Chicago/Turabian StyleZhang, Daoping, Fansheng Meng, Yeyao Wang, Lingsong Zhang, Hao Xue, Zhuming Liang, and Jiasheng Zhang. 2023. "Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China" Water 15, no. 8: 1579. https://doi.org/10.3390/w15081579
APA StyleZhang, D., Meng, F., Wang, Y., Zhang, L., Xue, H., Liang, Z., & Zhang, J. (2023). Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China. Water, 15(8), 1579. https://doi.org/10.3390/w15081579