Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Materials and Analytical Methods
3. Results and Discussion
3.1. Discharge Characteristics of NPG-LD
3.2. Effect of Pulse Peak Voltage on the Removal Efficiency of PYR
3.3. The Optical Emission Spectra of NPG-LD
3.4. Plasma Electron Density of NPG-LD
3.5. The Degradation Mechanism and Pathways of PYR
3.6. DFT Calculations and Ecotoxicity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murugesan, P.; Monica, E.V.; Moses, J.A.; Anandharamakrishnan, C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. J. Environ. Chem. Eng. 2020, 8, 104377. [Google Scholar]
- Yang, K.; Shen, H.W.; Liu, Y.Y.; Liu, Y.; Ge, P.J.; Yang, D.Z. Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst. Plasma Sci. Technol. 2022, 24, 095504. [Google Scholar] [CrossRef]
- Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. [Google Scholar] [CrossRef]
- Man, C.X.; Zhang, C.; Fang, H.Q.; Zhou, R.W.; Huang, B.D.; Xu, Y.Z.; Zhang, X.X.; Shao, T. Nanosecond-pulsed microbubble plasma reactor for plasma-activated water generation and bacterial inactivation. Plasma Process. Polym. 2022, 19, 2200004. [Google Scholar] [CrossRef]
- Aggelopoulos, C.A. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chem. Eng. J. 2022, 428, 131657. [Google Scholar] [CrossRef]
- Liang, J.P.; Zhou, X.F.; Zhao, Z.L.; Yang, D.Z.; Wang, W.C. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma. J. Environ. Manag. 2021, 278 Pt 2, 111539. [Google Scholar] [CrossRef]
- Duan, L.J.; Rao, S.; Wang, D.X.; Zhang, K.F.; Cao, H.Y.; Liu, Z.Q.; Guo, Q.S.; Li, W.; Tao, J.Z.; Gao, Y. Understanding of TiO2 catalysis mechanism in underwater pulsed discharge system: Charge carrier generation and interfacial charge-transfer processes. Chemosphere 2021, 267, 129249. [Google Scholar] [CrossRef] [PubMed]
- Jungling, E.; Grosse, K.; von Keudell, A. Propagation of nanosecond plasmas in liquids-Streamer velocities and streamer lengths. J. Vac. Sci. Technol. A 2022, 40, 043003. [Google Scholar] [CrossRef]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Z.; Zhou, R.; Fang, Z.; Cullen, P.J. Highly synergistic effect for tetracycline degradation by coupling a transient spark gas–liquid discharge with TiO2 photocatalysis. Chem. Eng. J. 2022, 450, 138409. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, T.; Zhou, J.; Guo, H.; Qu, G.; Guo, X.; Jia, H.; Zhu, L. Intrinsic mechanisms underlying the highly efficient removal of bacterial endotoxin and related risks in tailwater by dielectric barrier discharge plasma. Water Res. 2022, 226, 119214. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Alamri, S.; Hashem, M. Endotoxin removal efficiency in conventional drinking water treatment plants, a case study in Egypt. Water SA 2022, 48, 180–186. [Google Scholar]
- Rasuli, L.; Dehghani, M.H.; Aghaei, M.; Mahvi, A.H.; Mubarak, N.M.; Karri, R.R. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. Chemosphere 2022, 303, 135089. [Google Scholar] [CrossRef]
- Ma, S.; Kim, K.; Chun, S.; Moon, S.Y.; Hong, Y. Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment. Chemosphere 2020, 243, 125377. [Google Scholar] [CrossRef]
- Wang, J.; Xing, C.; Xia, J.; Chen, H.; Zhang, J.; Yan, W. Degradation of carbendazim in aqueous solution by dielectric barrier discharge cold plasma: Identification and toxicity of degradation products. Food Chem. 2023, 403, 134329. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Shao, C.; Liu, C.; Wu, Y.; Huang, Q. Study of detoxification of methyl parathion by dielectric barrier discharge (DBD) non-thermal plasma at gas-liquid interface: Mechanism and bio-toxicity evaluation. Chemosphere 2022, 307, 135620. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, R.; Wang, P.; Mai-Prochnow, A.; McConchie, R.; Li, W.; Zhou, R.; Thompson, E.W.; Ostrikov, K.; Cullen, P.J. Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chem. Eng. J. 2021, 421, 127730. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.W.; Liao, L.N.; Li, Z.; Pan, S.J.; Puyang, C.D.; Su, Y.Y.; Zhang, Y.; Wang, T.C.; Ren, J.Y.; et al. Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chem. Eng. J. 2022, 436, 135239. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Wang, H.; Chen, S.; Guo, P. High Efficiency Removal of Sulfur Mustard Surrogate by Cold Plasma Jet. Plasma Chem. Plasma Process. 2022, 42, 303–319. [Google Scholar] [CrossRef]
- Tachibana, K.; Yasuoka, K. Understanding of chemical reactions induced by argon plasma in contact with sodium halide solutions: Importance of surface properties for plasma–liquid interactions. J. Phys. D Appl. Phys. 2020, 53, 125203. [Google Scholar] [CrossRef]
- Oldham, T.; Chen, M.; Sharkey, S.; Parker, K.M.; Thimsen, E. Electrochemical characterization of the plasma-water interface. J. Phys. D Appl. Phys. 2020, 53, 165202. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Alam, D.; Zhang, T.; Li, W.; Xia, Y.; Mai-Prochnow, A.; An, H.; Lovell, E.C.; Masood, H.; et al. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chem. Eng. J. 2021, 403, 126413. [Google Scholar] [CrossRef]
- Zhou, X.F.; Liang, J.P.; Zhao, Z.L.; Yuan, H.; Qiao, J.J.; Xu, Q.N.; Wang, H.L.; Wang, W.C.; Yang, D.Z. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon. J. Hazard. Mater. 2021, 403, 123626. [Google Scholar] [CrossRef]
- Chen, F.; Yang, D.; Yu, F.; Kun, Y.; Song, Y. The Effect of Mass Transfer Rate-Time in Bubbles on Removal of Azoxystrobin in Water by Micro-Sized Jet Array Discharge. Catalysts 2021, 11, 1169. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.W.; Zhou, R.W.; Liu, F.; Fang, Z.; Ostrikov, K.; Cullen, P.J. Microsecond pulse gas-liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics. Plasma Process. Polym. 2021, 18, 2000135. [Google Scholar] [CrossRef]
- Liang, J.-P.; Zhao, Z.-L.; Zhou, X.-F.; Yang, D.-Z.; Yuan, H.; Wang, W.-C.; Qiao, J.-J. Comparison of gas phase discharge and gas-liquid discharge for water activation and methylene blue degradation. Vacuum 2020, 181, 109644. [Google Scholar] [CrossRef]
- Myers, B.; Ranieri, P.; Smirnova, T.; Hewitt, P.; Peterson, D.; Herrera Quesada, M.; Lenker, E.; Stapelmann, K. Measuring plasma-generated·OH and O atoms in liquid using EPR spectroscopy and the non-selectivity of the HTA assay. J. Phys. D Appl. Phys. 2021, 54, 145202. [Google Scholar] [CrossRef]
- Ning, W.J.; Lai, J.; Kruszelnicki, J.; Foster, J.E.; Dai, D.; Kushner, M.J. Propagation of positive discharges in an air bubble having an embedded water droplet. Plasma Sources Sci. Technol. 2021, 30, 015005. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.-W.; Bao, J.; Shen, X.-J.; Li, C.-L.; Wang, X.; Shao, L.-X. Optimized Removal of Azo Dyes from Simulated Wastewater through Advanced Plasma Technique with Novel Reactor. Water 2022, 14, 3152. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, Y.; Pei, X.; Tian, D.; Liu, Z.; Yang, L.; Feng, E.; Ji, H.-F.; Chen, Q. An Energy Efficient Process for Degrading Perfluorooctanoic Acid (PFOA) Using Strip Fountain Dielectric Barrier Discharge Plasma. Water 2022, 14, 2420. [Google Scholar] [CrossRef]
- Wu, L.; Xie, Q.; Lv, Y.; Wu, Z.; Liang, X.; Lu, M.; Nie, Y. Degradation of Methylene Blue via Dielectric Barrier Discharge Plasma Treatment. Water 2019, 11, 1818. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Yang, D.-Z.; Wang, W.; Fang, Z. Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode. J. Appl. Phys. 2019, 125, 043304. [Google Scholar] [CrossRef]
- Zeng, L.R.; Shi, L.H.; Meng, X.G.; Xu, J.; Jia, G.F.; Gui, T.; Zhang, Y.P.; Hu, Y. Evaluation of photolysis and hydrolysis of pyraclostrobin in aqueous solutions and its degradation products in paddy water. J. Environ. Sci. Health B 2019, 54, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Sanito, R.C.; You, S.J.; Wang, Y.F. Degradation of contaminants in plasma technology: An overview. J. Hazard. Mater. 2022, 424, 127390. [Google Scholar] [CrossRef]
- Šimečková, J.; Krčma, F.; Klofáč, D.; Dostál, L.; Kozáková, Z. Influence of Plasma-Activated Water on Physical and Physical–Chemical Soil Properties. Water 2020, 12, 2357. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, J.; Zhou, X.; Yuan, H.; Li, Y.; Chang, D.; Yang, K.; Yang, D. Degradation of persistent organic pollutants in soil by parallel tubes-array dielectric barrier discharge plasma cooperating with catalyst. Chem. Eng. J. 2022, 437, 135089. [Google Scholar] [CrossRef]
- Zhao, H.; Kong, C.H. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresour Technol. 2018, 258, 227–233. [Google Scholar] [CrossRef]
- Skanes, B.; Ho, J.; Warriner, K.; Prosser, R.S. Degradation of boscalid, pyraclostrobin, fenbuconazole, and glyphosate residues by an advanced oxidative process utilizing ultraviolet light and hydrogen peroxide. J. Photochem. Photobiol. A Chem. 2021, 418, 113382. [Google Scholar] [CrossRef]
- Misra, N.N.; Pankaj, S.K.; Walsh, T.; O’Regan, F.; Bourke, P.; Cullen, P.J. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 2014, 271, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, C.A.; Meropoulis, S.; Hatzisymeon, M.; Lada, Z.G.; Rassias, G. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: Parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chem. Eng. J. 2020, 398, 125622. [Google Scholar] [CrossRef]
- Zhou, X.F.; Zhao, Z.L.; Liang, J.P.; Yuan, H.; Wang, W.C.; Yang, D.Z. Measurement of reactive species in different solutions of bubble discharge with varying O2/N2 proportion in Ar: Analysis of reaction pathways. Plasma Process. Polym. 2019, 16, e1900001. [Google Scholar] [CrossRef]
- Szulc, M.; Forster, G.; Marques-Lopez, J.-L.; Schein, J. Influence of Pulse Amplitude and Frequency on Plasma Properties of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure. Appl. Sci. 2022, 12, 6580. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, D.-Z.; Li, X.; Zhang, L.; Zhou, X.-F.; Wang, W.-C.; Xu, Y. A pulsed electrolyte cathode discharge used for metal element analysis by atomic emission spectrometry. Phys. Plasmas 2019, 26, 053505. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Yuan, H.; Liang, J.; Zhang, M.; Li, Y.; Yang, D. Generation of High-Density Pulsed Gas-Liquid Discharge Plasma Using Floating Electrode Configuration at Atmospheric Pressure. Appl. Sci. 2022, 12, 8895. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Q.; Zhou, X.; Liang, J.; Yuan, H.; Yang, D.; Wang, W. Highly efficient adsorptive removal of persistent organic pollutants using NPD-acid combined modified NaY zeolites. Chem. Eng. J. 2022, 431, 133858. [Google Scholar] [CrossRef]
- Lagunas-Allué, L.; Martínez-Soria, M.-T.; Sanz-Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J.M. Degradation intermediates and reaction pathway of pyraclostrobin with TiO2 photocatalysis. Appl. Catal. B Environ. 2012, 115–116, 285–293. [Google Scholar] [CrossRef]
Method | Concentration (mg/L) | Pollutant | Treatment Time | Applied Voltage (kV) | Remediation Efficiency (%) |
Microbial/Fenton [37] | 30 | PYR | 24/72 h | - | 100 |
Photocatalysis/H2O2 [38] | 0.5 | PYR | 12 h | - | 90 |
Gas–liquid plasma [24] | 6 | Azoxystrobin | 9 min | 10 | 98.9 |
Dielectric barrier discharge (DBD) [39] | 1.7 | Azoxystrobin | 5 min | 80 | 69 |
This study | 20 | PYR | 10 min | 28 | 100 |
Pulsed Voltage (kV) | (nm) | (nm) | (nm) | Electron Density (1017 cm−3) |
---|---|---|---|---|
20 | 0.0224 | 0.070 | 0.3035 | 0.418 |
22 | 0.0225 | 0.069 | 0.3285 | 0.470 |
24 | 0.0225 | 0.069 | 2.0885 | 7.141 |
26 | 0.0225 | 0.069 | 2.2325 | 7.877 |
28 | 0.0225 | 0.067 | 2.3785 | 8.647 |
30 | 0.0225 | 0.068 | 2.4885 | 9.242 |
Structure | Retention Time (min) | m/z | Intensity |
---|---|---|---|
13.749 | 388.2 | 388.2 (100) 194.2 (43.7) 163.2 (21.85) 356.2 (11.04) | |
3.023 | 356.2 | 141.2 (100) 356.2 (90.95) 224.2 (78.29) 194.2 (72.9) 252.2 (61.4) | |
5.427 | 340.4 | 340.4 (100) 341.4 (20.28) 362.3 (5.23) | |
7.241 | 340.4 | 340.4 (100) 114.2 (4.76) | |
9.622 | 246.4 | 141.2 (100) 246.4 (62.72) 123.2 (34.95) 275.2 (25.75) | |
13.741 | 194.2 | 388.2 (100) 194.2 (42.82) 163.2 (22.12) | |
1.482 | 181.1 | 181.1 (100) 123.2 (72.81) 141.2 (68.59) 194.1 (45.23) | |
14.89 | 149.1 | 149.1 (100) 338.5 (34.96) 141.2 (14.4) 279 (12.12) | |
8.012 | 127.1 | 99.1 (100) 183.2 (63.84) 155.2 (46.77) 127.1 (41.29) | |
1.421 | 123.2 | 123.2 (100) 141.2 (28.04) 224.2 (21.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Yuan, H.; Liang, J.; Zhou, X.; Ge, P.; Liu, Y.; Gao, T.; Yang, K.; Yang, D. Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor. Water 2023, 15, 1562. https://doi.org/10.3390/w15081562
Shen H, Yuan H, Liang J, Zhou X, Ge P, Liu Y, Gao T, Yang K, Yang D. Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor. Water. 2023; 15(8):1562. https://doi.org/10.3390/w15081562
Chicago/Turabian StyleShen, Hongwei, Hao Yuan, Jianping Liang, Xiongfeng Zhou, Pingji Ge, Yang Liu, Tian Gao, Kun Yang, and Dezheng Yang. 2023. "Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor" Water 15, no. 8: 1562. https://doi.org/10.3390/w15081562
APA StyleShen, H., Yuan, H., Liang, J., Zhou, X., Ge, P., Liu, Y., Gao, T., Yang, K., & Yang, D. (2023). Degradation of Pyraclostrobin in Water Using a Novel Hybrid Gas–Liquid Phase Discharge Reactor. Water, 15(8), 1562. https://doi.org/10.3390/w15081562