Rainwater Harvesting and Treatment: State of the Art and Perspectives
Abstract
:1. Introduction
2. Rainwater Harvesting
2.1. Advantages and Limitations
2.2. Regulations and Laws
3. Rainwater Harvesting Systems
4. Rainwater Treatment
4.1. Quality of First-Flush Roof Runoff and Harvested Rainwater
4.2. Rainwater Treatment State of the Art
4.2.1. Disinfection
4.2.2. Filtration
4.2.3. Biological Treatment Options
4.2.4. Recent Trends
5. Trends and Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
BCR | Benefit Cost Ratio |
BMP | Best Management Practices |
GAC | Granular Activated Carbon |
GDM | Gravity Driven Membrane |
LCA | Life Cycle Assessment |
LID | Low-Impact Development |
MCA | Multiple Criteria Analysis |
MF | Microfiltration |
NF | Nanofiltration |
RO | Reverse Osmosis |
RTC | Real-Time Control |
RWH | Rainwater Harvesting |
SDG | Sustainable Development Goal |
SODIS | Solar Disinfection |
SuDS | Sustainable Drainage Systems |
UF | Ultrafiltration |
UN | United Nations |
UV | Ultraviolet |
YAS | Yield After Spillage |
YBS | Yield Before Spillage |
WMO | World Meteorological Organization |
References
- United Nations. 2019. Available online: https://sdgs.un.org/goals/goal6 (accessed on 28 February 2023).
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. TheWorld’s Road toWater Scarcity: Shortage and Stress in the 20th Century and Pathways towards Sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. State of the Global Climate 2021: WMO Provisional Report; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Centre for Research on the Epidemiology of Disasters (CRED). Disaster Year in Review 2020 Global Trends and Perspective; CRED: Brussels, Belgium, 2020. [Google Scholar]
- Bruins, H.J.; Evenari, M.; Nessler, U. Rainwater-harvesting agriculture for food production in arid zones: The challenge of the African famine. Appl. Geogr. 1986, 6, 13–32. [Google Scholar] [CrossRef]
- Kim, Y.; Han, M.; Kabubi, J.; Sohn, H.G.; Nguyen, D.C. Community-based rainwater harvesting (CB-RWH) to supply drinking water in developing countries: Lessons learned from case studies in Africa and Asia. Water Supply 2016, 16, 1110–1121. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H. Urban Rainwater Harvesting Systems: Research, Implementation and Future Perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- De Sá Silva, A.C.R.; Bimbato, A.M.; Balestieri, J.A.P.; Vilanova, M.R.N. Exploring Environmental, Economic and Social Aspects of Rainwater Harvesting Systems: A Review. Sustain. Cities Soc. 2022, 76, 103475. [Google Scholar] [CrossRef]
- Barbier, E.B. The Concept of Sustainable Economic Development. Environ. Conserv. 1987, 14, 101–110. [Google Scholar] [CrossRef]
- Assembly, G. A/RES/66/288: The Future We Want; United Nations: New York, NU, USA, 2012. [Google Scholar]
- Barbier, E.B.; Burgess, J.C. The Sustainable Development Goals and the Systems Approach to Sustainability. Economics 2017, 11, 2017–2028. [Google Scholar] [CrossRef] [Green Version]
- Girma, A.; Kassie, M.; Bauer, S.; Leal Filho, W. Integrated Rainwater Harvesting Practices for Poverty Reduction under Climate Change: Micro-Evidence from Ethiopia. In University Initiatives in Climate Change Mitigation and Adaptation; Springer International Publishing: Cham, Switzerland, 2019; pp. 159–174. [Google Scholar]
- Kelemewerk Mekuria, Z.; Kassegn Amede, A.; Endris Mekonnen, E. Adoption of Rainwater Harvesting and Its Impact on Smallholder Farmer Livelihoods in Kutaber District, South Wollo Zone, Ethiopia. Cogent Food Agric. 2020, 6, 1834910. [Google Scholar] [CrossRef]
- Fry, L.M.; Cowden, J.R.; Watkins, D.W.; Clasen, T.; Mihelcic, J.R. Quantifying Health Improvements from Water Quantity Enhancement: An Engineering Perspective Applied to Rainwater Harvesting in West Africa. Environ. Sci. Technol. 2010, 44, 9535–9541. [Google Scholar] [CrossRef]
- Graham, J.P.; Hirai, M.; Kim, S.-S. An Analysis of Water Collection Labor among Women and Children in 24 Sub-Saharan African Countries. PLoS ONE 2016, 11, e0155981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwenge Kahinda, J.m.; Taigbenu, A.E.; Boroto, J.R. Domestic Rainwater Harvesting to Improve Water Supply in Rural South Africa. Phys Chem. Earth 2007, 32, 1050–1057. [Google Scholar] [CrossRef]
- Stockholm Environment Institute. Rainwater Harvesting: A Lifeline for Human Well-Being; United Nations Environment Programme: Nairobi, Kenya, 2009. [Google Scholar]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic Analysis of Rainwater Harvesting Systems Comparing Developing and Developed Countries: A Case Study of Australia and Kenya. J. Clean. Prod. 2018, 172, 196–207. [Google Scholar] [CrossRef]
- Herrmann, T.; Schmida, U. Rainwater Utilisation in Germany: Efficiency, Dimensioning, Hydraulic and Environmental Aspects. Urban Water J. 1999, 1, 307–316. [Google Scholar] [CrossRef]
- Coombes, P.J.; Kuczera, G. A Sensitivity Analysis of an Investment Model Used to Determine the Economic Benefits of Rainwater Tanks. In Proceedings of the 28th International Hydrology and Water Resources Symposium: About Water, Symposium Proceedings, Wollogong, Australia, 10–14 November 2003; Barton, A.C.T., Ed.; pp. 243–250. [Google Scholar]
- Lindoso, D.P.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S.; Nasuti, S. Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, K.; Hofman, J.; Driessen, P.P.J.; Frijns, J. The Challenges of Water Management and Governance in Cities. Water 2019, 11, 1180. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Parra, M.V.; Rovira-Val, M.R.; Gabarrell, X.; Villalba, G. Rainwater Harvesting Systems Reduce Detergent Use. Int. J. Life Cycle Assess. 2019, 24, 809–823. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zhu, Z.; Matott, L.S.; Rabideau, A.J.; Torres, M.N. Optimal Siting of Rainwater Harvesting Systems for Reducing Combined Sewer Overflows at City Scale. Water Res. 2023, 230, 119533. [Google Scholar] [CrossRef]
- Norfolk, O.; Abdel-Dayem, M.; Gilbert, F. Rainwater Harvesting and Arthropod Biodiversity within an Arid Agro-Ecosystem. Agric. Ecosyst. Environ. 2012, 162, 8–14. [Google Scholar] [CrossRef]
- Vohland, K.; Barry, B. A Review of in Situ Rainwater Harvesting (RWH) Practices Modifying Landscape Functions in African Drylands. Agric. Ecosyst. Environ. 2009, 131, 119–127. [Google Scholar] [CrossRef]
- Rautanen, S.L.; White, P. Using Every Drop—Experiences of Good Local Water Governance and Multiple-Use Water Services for Food Security in Far-Western Nepal. Aquat. Procedia 2013, 1, 120–129. [Google Scholar] [CrossRef]
- Sefton, C.; Sharp, L.; Quinn, R.; Stovin, V.; Pitcher, L. The Feasibility of Domestic Raintanks Contributing to Community-Oriented Urban Flood Resilience. Clim. Risk Manag. 2022, 35, 100390. [Google Scholar] [CrossRef]
- Lehmann, C.; Tsukada, R.; Lourete, A. Low-Cost Technologies towards Achieving the Millennium Development Goals: The Case of Rainwater Harvesting; International Policy Centre for Inclusive Growth: Brasilia, Brazil, 2010. [Google Scholar]
- Ross, T.T.; Alim, M.A.; Rahman, A. Community-Scale Rural Drinking Water Supply Systems Based on Harvested Rainwater: A Case Study of Australia and Vietnam. Water 2022, 14, 1763. [Google Scholar] [CrossRef]
- Ahamed, S.; Sengupta, K.; Mukherjee, C.; Pati, S.; Mukherjee, A.; Rahman, M.M.; Hossain, M.A.; Das, B.; Nayak, B.; Pal, A.; et al. An Eight-Year Study Report on Arsenic Contamination in Groundwater and Health Effects in Eruani Village, Bangladesh and an Approach for Its Mitigation. J. Health Popul. Nutr. 2006, 24, 129–141. [Google Scholar]
- Naser, A.M.; Martorell, R.; Narayan, K.M.V.; Clasen, T.F. First do No Harm: The Need to Explore Potential Adverse Health Implications of Drinking Rainwater. Environ. Sci. Technol. 2017, 51, 5865–5866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi Mehrabadi, M.H.; Saghafian, B.; Haghighi Fashi, F. Assessment of Residential Rainwater Harvesting Efficiency for Meeting Non-Potable Water Demands in Three Climate Conditions. Resour. Conserv. Recycl. 2013, 73, 86–93. [Google Scholar] [CrossRef]
- Quinn, R.; Rougé, C.; Stovin, V. Quantifying the Performance of Dual-Use Rainwater Harvesting Systems. Water Res. X 2021, 10, 100081. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.D.; Fletcher, T.D.; Duncan, H.P.; Bergmann, D.J.; Breman, J.; Burns, M.J. Improving the Multi-Objective Performance of Rainwater Harvesting Systems Using Real-Time Control Technology. Water 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Musayev, S.; Burgess, E.; Mellor, J. A Global Performance Assessment of Rainwater Harvesting under Climate Change. Resour. Conserv. Recycl. 2018, 132, 62–70. [Google Scholar] [CrossRef]
- Schuetze, T. Rainwater Harvesting and Management—Policy and Regulations in Germany. Water Supply 2013, 13, 376–385. [Google Scholar] [CrossRef]
- The British Standards Institution. On-Site Non-Potable Water Systems. Code of Practice: BS EN 16941-1:2018; The British Standards Institution: London, UK, 2018. [Google Scholar]
- da Costa Pacheco, P.R.; Dumit Gómez, Y.; Ferreira de Oliveira, I.; Girard Teixeira, L.C. A View of the Legislative Scenario for Rainwater Harvesting in Brazil. J. Clean. Prod. 2017, 141, 290–294. [Google Scholar] [CrossRef]
- Meehan, K.M.; Moore, A.W. Downspout Politics, Upstream Conflict: Formalizing Rainwater Harvesting in the United States. Water Int. 2014, 39, 417–430. [Google Scholar] [CrossRef]
- Gabe, J.; Trowsdale, S.; Mistry, D. Mandatory Urban Rainwater Harvesting: Learning from Experience. Water Sci. Technol. 2012, 65, 1200–1207. [Google Scholar] [CrossRef]
- Parsons, D.; Goodhew, S.; Fewkes, A.; de Wilde, P. The Perceived Barriers to the Inclusion of Rainwater Harvesting Systems by UK House Building Companies. Urban Water J. 2010, 7, 257–265. [Google Scholar] [CrossRef]
- Freni, G.; Liuzzo, L. Effectiveness of rainwater harvesting systems for flood reduction in residential urban areas. Water 2019, 11, 1389. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, A.; Becciu, G. Probabilistic Design of Multi-use Rainwater Tanks. Procedia Eng. 2014, 70, 1391–1400. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.; Matos Silva, C.; Shetty, N.; Wang, M.; Elliott, R.; Culligan, P. Examining How a Smart Rainwater Harvesting System Connected to a Green Roof Can Improve Urban Stormwater Management. Water 2022, 14, 2216. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A.; Tookey, J.; GhaffarianHoseini, A.; Yusoff, S.M.; Hassan, N.B. State of the art of rainwater harvesting systems towards promoting green built environments: A review. Desalinat. Water Treat. 2016, 57, 95–104. [Google Scholar] [CrossRef]
- An, K.J.; Lam, Y.F.; Hao, S.; Morakinyo, T.E.; Furumai, H. Multi-purpose rainwater harvesting for water resource recovery and the cooling effect. Water Res. 2015, 86, 116–121. [Google Scholar] [CrossRef]
- Marchioni, M.; Raimondi, A.; Di Chiano, M.G.; Sanfilippo, U.; Mambretti, S.; Becciu, G. Costs-benefit analysis for the use of shallow groundwater as non-conventional water resources. Water Resour. Manag. 2023, 37, 2125–2142. [Google Scholar] [CrossRef]
- Van Seters, T. Performance Evaluation of Rainwater Harvesting Systems in Toronto, Ontario; Toronto and Region Conservation Authority: Toronto, ON, Canada, 2011. [Google Scholar]
- Abbasi, T.; Abbasi, S.A. Sources of pollution in rooftop rainwater harvesting systems and their control. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2097–2167. [Google Scholar] [CrossRef]
- Melville-Shreeve, P.; Ward, S.; Butler, D. Rainwater harvesting typologies for UK houses: A multi criteria analysis of system configurations. Water 2016, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Modica, C. Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems. J. Hydroinform. 2016, 18, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Ghisi, E. Parameters Influencing the Sizing of Rainwater Tanks for Use in Houses. Water Resour. Manag. 2010, 24, 2381–2403. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J. Hydrol. 2011, 401, 65–76. [Google Scholar] [CrossRef]
- Cowden, J.R.; Watkins, D.W.; Mihelcic, J.R. Stochastic rainfall modeling in West Africa: Parsimonious approaches for domestic rainwater harvesting assessment. J. Hydrol. 2008, 361, 64–77. [Google Scholar] [CrossRef]
- Basinger, M.; Montalto, F.; Lall, U. A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J. Hydrol. 2010, 392, 105–118. [Google Scholar] [CrossRef]
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection systems using behavioral models. Build. Serv. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar] [CrossRef]
- Liaw, C.-H.; Tsai, Y.L. Optimum storage volume of rooftop rainwater harvesting systems for domestic use. J. Am. Water Resour. Assoc. 2004, 40, 901–912. [Google Scholar] [CrossRef]
- Sample, D.J.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Di Chiano, M.G.; Marchioni, M.; Raimondi, A.; Sanfilippo, U.; Becciu, G. Probabilistic Approach to Tank Design in Rainwater Harvesting Systems. Hydrology 2023, 10, 59. [Google Scholar] [CrossRef]
- Latham, B.G. Rainwater Collection Systems: The Design of Single-Purpose Reservoirs; University of Ottawa: Ottawa, ON, Canada, 1983. [Google Scholar]
- Rowe, E.; Guo, Y.; Li, Z. Seeking more cost-efficient design criteria for infiltration trenches. J. Sustain. Water Built Environ. 2021, 7, 04021009. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y. Dynamic water balance of infiltration-based stormwater best management practices. J. Hydrol. 2020, 589, 125174. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G. Performance of green roofs for rainwater control. Water Resour. Manag. 2021, 35, 99–111. [Google Scholar] [CrossRef]
- Raimondi, A.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Vegetation survival in green roofs without irrigation. Water 2021, 13, 136. [Google Scholar] [CrossRef]
- Becciu, G.; Raimondi, A.; Dresti, C. Semi-probabilistic design of rainwater tanks: A case study in Northern Italy. Urban Water J. 2018, 15, 92–199. [Google Scholar] [CrossRef]
- Raimondi, A.; Di Chiano, M.G.; Marchioni, M.; Sanfilippo, U.; Becciu, G. Probabilistic modelling of Sustainable Urban Drainage Systems. Urban Ecosyst. 2022, 1573–1642. [Google Scholar] [CrossRef]
- Raimondi, A.; Sanfilippo, U.; Marchioni, M.; Di Chiano, M.G.; Becciu, G. Influence of climatic parameters on the probabilistic design of green roofs. Sci. Total Environ. 2023, 865, 161291. [Google Scholar] [CrossRef]
- Campisano, A.; Lupia, F. A dimensionless approach for the urban-scale evaluation of domestic rainwater harvesting systems for toilet flushing and garden irrigation. Urban Water J. 2017, 14, 883–891. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Chen, L.; Ashbolt, S. Potential for rainwater use in high-rise buildings in Australian cities. J. Environ. Manag. 2009, 91, 222–226. [Google Scholar] [CrossRef]
- Khan, Z.; Alim, M.A.; Rahman, M.M.; Rahman, A. A continental scale evaluation of rainwater harvesting in Australia. Resour. Conserv. Recycl. 2021, 167, 105378. [Google Scholar] [CrossRef]
- Crosson, C.; Tong, D.; Zhang, Y.; Zhong, Q. Rainwater as a Renewable Resource to Achieve Net Zero Urban Water in Water Stressed Cities. Resour. Conserv. Recycl. 2021, 164, 105203. [Google Scholar] [CrossRef]
- Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms. Environ. Modell. Softw. 2021, 111, 34–41. [Google Scholar] [CrossRef]
- Mugume, S.; Melville-Shreeve, P.; Gomez, D.; Butler, D. Multifunctional urban flood resilience enhancement strategies. Water Manag. 2016, 170, 115–127. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. On the Effectiveness of Domestic Rainwater Harvesting Systems to Support Urban Flood Resilience. Water Resour. Manag. 2022, 36, 5897–5914. [Google Scholar] [CrossRef]
- Morales-Pinz_on, T.; Rieradevall, J.; Gasol, C.M.; Gabarrell, X. Modelling for economic cost and environmental analysis of rainwater harvesting systems. J. Clean. Prod. 2015, 87, 613–626. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Deletic, A. Rainwater harvesting for urban flood management—An integrated modelling framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef]
- Haque, M.M.; Rahman, A.; Samali, B. Evaluation of climate change impacts on rainwater harvesting. J. Clean. Prod. 2016, 137, 60–69. [Google Scholar] [CrossRef]
- Alamdari, N.; Sample, D.J.; Liu, J.; Ross, A. Assessing climate change impacts on the reliability of rainwater harvesting systems. Resour. Conserv. Recycl. 2018, 132, 178–189. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Yue, T.; Jing, X. Impacts of climate change on urban rainwater harvesting systems. Sci. Total Environ. 2019, 665, 262–274. [Google Scholar] [CrossRef]
- Texas Water Development Board. The Texas Manual on Rainwater Harvesting, 3rd ed.; Texas Water Development Board: Austin, TX, USA, 2005. [Google Scholar]
- Mazurkiewicz, K.; Jeż-Walkowiak, J.; Michałkiewicz, M. Physicochemical and microbiological quality of rainwater harvested in underground retention tanks. Sci. Total Environ. 2022, 814, 152701. [Google Scholar] [CrossRef]
- Hamilton, K.; Reyneke, B.; Waso, M.; Clements, T.; Ndlovu, T.; Khan, W.; DiGiovanni, K.; Rakestraw, E.; Montalto, F.; Haas, C.N.; et al. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. NPJ Clean Water 2019, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Despins, C.; Farahbakhsh, K.; Leidl, C. Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. J. Water Supply Res. Technol. AQUA 2009, 58, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater—Comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef]
- Zdeb, M.; Zamorska, J.; Papciak, D.; Skwarczyńska-Wojsa, A. Investigation of microbiological quality changes of roof-harvested rainwater stored in the tanks. Resources 2021, 10, 103. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. Assessment of water quality of first-flush roof runoff and harvested rainwater. J. Hydrol. 2012, 466–467, 115–126. [Google Scholar] [CrossRef]
- O’Hogain, S.; Mccarton, L.; Mcintyre, N.; Pender, J.; Reid, A. Physicochemical and microbiological quality of harvested rainwater from an agricultural installation in Ireland. Water Environ. J. 2012, 26, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Maestre, J.P.; Kinney, K.A.; Kirisits, M.J. An examination of the microbial community and occurrence of potential human pathogens in rainwater harvested from different roofing materials. Water Res. 2019, 159, 406–413. [Google Scholar] [CrossRef]
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustain. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Suitability of roof harvested rainwater for potential potable water production: A scoping review. J. Clean. Prod. 2020, 248, 119226. [Google Scholar] [CrossRef]
- Reyneke, B.; Waso, M.; Khan, S.; Khan, W. Rainwater treatment technologies: Research needs, recent advances and effective monitoring strategies. Curr. Opin. Environ. Sci. Health 2020, 16, 28–33. [Google Scholar] [CrossRef]
- Sobsey, M.D. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Mintz, E.D.; Bartram, J.; Lochery, P.; Wegelin, M. Not just a drop in the bucket: Expanding access to point-of-use water treatment systems. Am. J. Public Health 2001, 91, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Alim, M.A.; Rahman, A. Disinfection methods for domestic rainwater harvesting systems: A scoping review. J. Water Process Eng. 2022, 46, 102542. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.L.; Chu, W.H.; Xu, B.; Zhang, T.Y.; Hu, C.Y.; Cao, T.C.; Gao, N.Y.; Dong, C. Di Comparison of different disinfection processes for controlling disinfection by-product formation in rainwater. J. Hazard. Mater. 2020, 385, 121618. [Google Scholar] [CrossRef] [PubMed]
- Muraca, P.W.; Yu, V.L.; Goetz, A. Disinfection of water distribution systems for legionella: A review of application procedures and methodologies. Infect. Control Hosp. Epidemiol. 1990, 11, 79–88. [Google Scholar] [CrossRef]
- Clasen, T.F.; Thao, D.H.; Boisson, S.; Shipin, O. Microbiological Effectiveness and Cost of Boiling to Disinfect Drinking Water in Rural Vietnam. Environ. Sci. Technol. 2008, 42, 4255–4260. [Google Scholar] [CrossRef] [PubMed]
- Meera, V.; Ahammed, M.M. Solar disinfection for household treatment of roof-harvested rainwater. Water Sci. Technol. Water Supply 2008, 8, 153–160. [Google Scholar] [CrossRef]
- Acra, A.; Raffoul, Z.; Karahagopian, Y. Solar Disinfection of Drinking Water and Oral Rehydration Solutions; Illustrated Publications: Beirut, Lebanon, 1984. [Google Scholar]
- Amin, M.T.; Nawaz, M.; Amin, M.N.; Han, M. Solar disinfection of Pseudomonas aeruginosa in harvested rainwater: A step towards potability of rainwater. PLoS ONE 2014, 9, e90743. [Google Scholar] [CrossRef]
- Amin, M.T.; Han, M.Y. Roof-harvested rainwater for potable purposes: Application of solar collector disinfection (SOCO-DIS). Water Res. 2009, 43, 5225–5235. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Feasibility analysis of a small-scale rainwater harvesting system for drinking water production at Werrington, New South Wales, Australia. J. Clean. Prod. 2020, 270, 122437. [Google Scholar] [CrossRef]
- Sabiri, N.E.; Monnier, E.; Raimbault, V.; Massé, A.; Séchet, V.; Jaouen, P. Effect of filtration rate on coal-sand dual-media filter performances for microalgae removal. Environ. Technol. 2017, 38, 345–352. [Google Scholar] [CrossRef]
- Brown, J.; Sobsey, M.D. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia. J. Water Health 2010, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcallister, S. Analysis and Comparison of Sustainable Water Filters; University of Wisconsin-Madison: Madison, WI, USA, 2005; Volume 2005. [Google Scholar]
- Ellis, K.V.; Wood, W.E. Slow sand filtration. Crit. Rev. Environ. Control 1985, 15, 315–354. [Google Scholar] [CrossRef]
- Burch, J.D.; Thomas, K.E. Water disinfection for developing countries and potential for solar thermal pasteurization. Sol. Energy 1998, 64, 87–97. [Google Scholar] [CrossRef]
- Gibert, O.; Lefèvre, B.; Fernández, M.; Bernat, X.; Paraira, M.; Pons, M. Fractionation and removal of dissolved organic carbon in a full-scale granular activated carbon filter used for drinking water production. Water Res. 2013, 47, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, V.; Scannapieco, D.; Belgiorno, V. Enhanced drinking water supply through harvested rainwater treatment. J. Hydrol. 2013, 498, 287–291. [Google Scholar] [CrossRef]
- MacDonald, M.C.; Juran, L.; Jose, J.; Srinivasan, S.; Ali, S.I.; Aronson, K.J.; Hall, K. The impact of rainfall and seasonal variability on the removal of bacteria by a point-of-use drinking water treatment intervention in Chennai, India. Int. J. Environ. Health Res. 2016, 26, 208–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouboulis, A.; Traskas, G.; Samaras, P. Comparison of single and dual media filtration in a full-scale drinking water treatment plant. Desalination 2007, 213, 334–342. [Google Scholar] [CrossRef]
- Sultana, N.; Akib, S.; Aqeel Ashraf, M.; Roseli Zainal Abidin, M. Quality assessment of harvested rainwater from green roofs under tropical climate. Desalin. Water Treat. 2016, 57, 75–82. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Ngo, H.H.; He, X.; Desmond, P.; Ding, A. Membrane technology for rainwater treatment and reuse: A mini review. Water Cycle 2021, 2, 51–63. [Google Scholar] [CrossRef]
- Dobrowsky, P.H.; Lombard, M.; Cloete, W.J.; Saayman, M.; Cloete, T.E.; Carstens, M.; Khan, S.; Khan, W. Efficiency of microfiltration systems for the removal of bacterial and viral contaminants from surface and rainwater. Water Air Soil Pollut. 2015, 226, 33. [Google Scholar] [CrossRef]
- Shiguang, C.; Hongwei, S.; Qiuli, C. Performance of an innovative gravity-driven micro-filtration technology for roof rainwater treatment. Environ. Eng. Res. 2021, 26, 200450. [Google Scholar] [CrossRef]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Oosterom, H.A.; Koenhen, D.M.; Bos, M. Production of demineralized water out of rainwater: Environmentally saving, energy efficient and cost effective. Desalination 2000, 131, 345–352. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, X.; Yang, W.; Yao, Z.; Mei, Y.; Peng, L.E.; Yang, Z.; Shao, S.; Tang, C.Y. Nanofiltration for drinking water treatment: A review. Front. Chem. Sci. Eng. 2022, 16, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Köse-Mutlu, B. Natural organic matter and sulphate elimination from rainwater with nanofiltration technology and process optimisation using response surface methodology. Water Sci. Technol. 2021, 83, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, X.; Wang, Y.; Mao, J.; Ding, Z.; Lu, Y.; Wang, X.; Lian, X.; Shi, Y. Producing and storing self-sustaining drinking water from rainwater for emergency response on isolated island. Sci. Total Environ. 2021, 768, 144513. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tu, Y.; Li, X.; Li, H. Application of reverse osmosis in purifying drinking water. E3S Web Conf. 2018, 38, 01037. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process Eng. 2021, 40, 101835. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Joshi, R.K.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Nishina, Y. Graphene oxide: The new membrane material. Appl. Mater. Today 2015, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Xiao, C.; Huang, Q.; Liu, H.; Zhao, J. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem. Eng. J. 2021, 403, 126295. [Google Scholar] [CrossRef]
- Sockett, R.E. Predatory Lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 2009, 63, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Waso, M.; Khan, S.; Singh, A.; McMichael, S.; Ahmed, W.; Fernández-Ibáñez, P.; Byrne, J.A.; Khan, W. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 2020, 1, 115281. [Google Scholar] [CrossRef]
- Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T. Bacteriophages—Potential for application in wastewater treatment processes. Sci. Total Environ. 2005, 339, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Turki, Y.; Ouzari, H.; Mehri, I.; Ammar, A.B.; Hassen, A. Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Res. Int. 2012, 45, 1099–1105. [Google Scholar] [CrossRef]
- Al-Jassim, N.; Mantilla-Calderon, D.; Scarascia, G.; Hong, P.-Y. Bacteriophages to Sensitize a Pathogenic New Delhi Metallo β-Lactamase-Positive Escherichia coli to Solar Disinfection. Environ. Sci. Technol. 2018, 52, 14331–14341. [Google Scholar] [CrossRef] [Green Version]
- Reyneke, B.; Khan, S.; Fernández-Ibáñez, P.; Khan, W. Podoviridae bacteriophage for the biocontrol of Pseudomonas aeruginosa in rainwater. Environ. Sci. Water Res. Technol. 2020, 6, 87–102. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Biswal, B.K.; Adam, M.G.; Soh, S.H.; Tsen-Tieng, D.L.; Davis, A.P.; Chew, S.H.; Tan, P.Y.; Babovic, V.; Balasubramanian, R. Bioretention systems for stormwater management: Recent advances and future prospects. J. Environ. Manag. 2021, 292, 112766. [Google Scholar] [CrossRef] [PubMed]
- Pronk, W.; Ding, A.; Morgenroth, E.; Derlon, N.; Desmond, P.; Burkhardt, M.; Wu, B.; Fane, A.G. Gravity-driven membrane filtration for water and wastewater treatment: A review. Water Res. 2019, 149, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Soon, G.Q.Y.; Chong, T.H. Recycling rainwater by submerged gravity-driven membrane (GDM) reactors: Effect of hydraulic retention time and periodic backwash. Sci. Total Environ. 2019, 654, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Akhondi, E.; Wicaksana, F.; Fane, A.G. Evaluation of fouling deposition, fouling reversibility and energy consumption of submerged hollow fiber membrane systems with periodic backwash. J. Memb. Sci. 2014, 452, 319–331. [Google Scholar] [CrossRef]
- Derlon, N.; Peter-Varbanets, M.; Scheidegger, A.; Pronk, W.; Morgenroth, E. Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Res. 2012, 46, 3323–3333. [Google Scholar] [CrossRef]
- Xu, J.; Du, X.; Zhao, W.; Wang, Z.; Lu, X.; Zhu, L.; Wang, Z.; Liang, H. Roofing rainwater cleaner production using pilot-scale electrocoagulation coupled with a gravity-driven membrane bioreactor (EC-GDMBR): Water treatment and energy efficiency. J. Clean. Prod. 2021, 314, 128055. [Google Scholar] [CrossRef]
- Stovin, V.; Quinn, R.; Rougé, C. Continuous Simulation Supports Multiple Design Criteria for Sustainable Drainage Systems (SuDS). J. Sustain. Water Built. Environ. 2023. ISSN 2379-6111. (In Press) [Google Scholar]
- Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. Real-Time Controlled Rainwater Harvesting Systems Can Improve the Performance of Stormwater Networks. J. Hydrol. 2022, 614, 128503. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Balan, P.; Chong, M.N.; Poh, P.E. Life-Cycle Assessment and Life-Cycle Cost Analysis of Decentralised Rainwater Harvesting, Greywater Recycling and Hybrid Rainwater-Greywater Systems. J. Clean. Prod. 2019, 229, 1211–1224. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.M.; Ingwersen, W.W.; Sojka, S. Life Cycle Assessment of a Commercial Rainwater Harvesting System Compared with a Municipal Water Supply System. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef]
- van Dijk, S.; Lounsbury, A.W.; Hoekstra, A.Y.; Wang, R. Strategic Design and Finance of Rainwater Harvesting to Cost-Effectively Meet Large-Scale Urban Water Infrastructure Needs. Water Res. 2020, 184, 116063. [Google Scholar] [CrossRef]
- Deng, Y.; Cardin, M.; Babovic, V.; Santhanakrishnan, D.; Schmitter, P.; Meshgi, A. Valuing flexibilities in the design of urban water management systems. Water Res. 2013, 47, 7162–7174. [Google Scholar] [CrossRef]
- Manocha, N.; Babovic, V. Development and valuation of adaption pathways for stormwater management infrastructure. Environ. Sci. Policy 2017, 77, 86–97. [Google Scholar] [CrossRef]
- Marquardt, M.; Russell, S. Community Governance for Sustainability: Exploring Benefits of Community Water Schemes? Local Environ. 2007, 12, 437–445. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.; Mark, O. Catchement-Scal and Local Scale Based Evaluation of LID Effectiveness of Urban Drainage System Performance. Water Resour. Manag. 2022, 36, 507–526. [Google Scholar] [CrossRef]
Sustainable Development Goal | Associated Sustainability Pillar [11] | Rainwater Harvesting Advantages |
---|---|---|
1. No Poverty | Economic | Girma et al. [12] showed that the use of integrated RWH practices has a significant negative impact on the probability that a household is multidimensionally poor in Ethiopia. |
2. Zero Hunger | Economic | Kelemewerk Mekuria et al. [13] demonstrated that adopting RWH technology has a positive and significant effect on the livelihood of farmers in terms of household annual farm income and food security in Ethiopia. |
3. Good Health and Wellbeing | Economic | RWH can provide an additional source of potable water, improving hygiene and thus decreasing disease prevalence. For example, Fry et al. [14] examined 37 West African cities and estimated that domestic RWH with 400 L storage capacity could result in a 9% reduction in disability-affected life years. |
4. Quality Education | Social | Graham et al. [15] summarized the burden of water collection in Sub-Saharan Africa that usually falls on women and children, negatively impacting their school attendance and performance. Mwenge Kahinda et al. [16] described one of the main advantages of RWH as alleviating the burden of having to travel great distances to fetch water. |
5. Gender Equality | Social | In addition to minimizing the distance travelled and time taken to fetch water, as discussed above, RWH also increases hygiene provisions in schools, decreasing the educational time girls miss due to menstruation [17]. |
6. Clean Water and Sanitation | Economic | Both Campisano et al. [7] and de Sá Silva et al. [8] summarized numerous studies which show that RWH is an excellent source of additional water supply. |
7. Affordable and Clean Energy | Economic | De Sá Silva et al. [8] summarized key benefits in this area regarding the ability of RWH to minimize the energy needed to treat drinking and wastewater. |
8. Good Jobs and Economic Growth | Economic | In certain circumstances, RWH can offer a cheaper water supply than alternatives such as street vendors [18].Jobs can also be created by policies which support RWH as they create a demand for associated products [19]. |
9. Industry, Innovation, and Infrastructure | Economic | RWH can delay the need to upgrade existing water treatment plants [20] and reduce the burden on combined sewer systems [20]. |
10. Reduced Inequalities | Social | RWH can reduce inequalities by providing a clean decentralizing water supply [21]. |
11. Sustainable Cities and Communities | Environment | RWH can be incorporated into cities’ approaches to governance and offers an opportunity to increase the sustainability of municipalities by providing a decentralized supplemental water supply and increasing resilience to flooding [22]. |
12. Responsible Consumption and Production | Environment | Modelling of RWH systems showed that RWH has the potential to reduce the amount of detergent used in clothes washing as they supply soft water, which requires fewer additives to clean garments [23]. |
13. Climate Action | Environment | RWH strengthens resilience and adaptive capacity to climate-related disasters such as droughts and intense rainfall [7,8]. |
14. Life Below Water | Environment | RWH systems, if implemented correctly, can help to prevent combined sewer overflow, which, if left unchecked, can cause a detrimental impact on aquatic environments [24]. |
15. Life on Land | Environment | In drylands, agricultural schemes which harvest water enhanced local arthropod abundance [25]. RWH has been shown to improve the soil nutrient profile, increasing biomass production and thus supporting higher numbers of plants and animals [26]. |
16. Peace, Justice, and Strong Institutions | Social | Integrated water resources management, including RWH, offers communities a chance to engage in water management planning and decision making; bringing people together to discuss water issues can also reduce violence [27]. Communities can also join in the design and operation of these systems by emptying them in advance of a large rainfall event [28]. |
17. Partnership for the Goals | Social | An extensive global partnership focused on the development of RWH is absent. However, numerous examples of international collaborations exist, such as between Brazil and China [29]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondi, A.; Quinn, R.; Abhijith, G.R.; Becciu, G.; Ostfeld, A. Rainwater Harvesting and Treatment: State of the Art and Perspectives. Water 2023, 15, 1518. https://doi.org/10.3390/w15081518
Raimondi A, Quinn R, Abhijith GR, Becciu G, Ostfeld A. Rainwater Harvesting and Treatment: State of the Art and Perspectives. Water. 2023; 15(8):1518. https://doi.org/10.3390/w15081518
Chicago/Turabian StyleRaimondi, Anita, Ruth Quinn, Gopinathan R. Abhijith, Gianfranco Becciu, and Avi Ostfeld. 2023. "Rainwater Harvesting and Treatment: State of the Art and Perspectives" Water 15, no. 8: 1518. https://doi.org/10.3390/w15081518
APA StyleRaimondi, A., Quinn, R., Abhijith, G. R., Becciu, G., & Ostfeld, A. (2023). Rainwater Harvesting and Treatment: State of the Art and Perspectives. Water, 15(8), 1518. https://doi.org/10.3390/w15081518