Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite and Climate Data
2.3. Methods
2.3.1. Pearson Correlation
2.3.2. Variable Contribution
2.3.3. Multiple Linear Regression (MLR)
2.3.4. Sequential Mann–Kendall (SQ-MK)
2.3.5. Wavelet Coherence (WTC)
3. Results
3.1. Characteristics of Drought over South Africa
3.2. Temporal Characteristics of ET, Precipitation and VCI
3.3. Spatial Characteristics of ET and VCI over the UORB
3.4. Correlation Analysis between Various Parameters
3.5. Variable Contribution to ET
3.6. Sequential Mann–Kendall (SQ-MK)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biggs, T.; Petropoulos, G.P.; Velpuri, N.M.; Marshall, M.; Glenn, E.P.; Nagler, P.; Messina, A. Remote Sensing of Actual Evapotranspiration from Croplands. In Remote Sensing of Water Resources, Disasters, and Urban Studies; CRC Press: Boca Raton, FL, USA, 2015; pp. 59–99. [Google Scholar]
- Danodia, A.; Patel, N.R.; Chol, C.W.; Nikam, B.R.; Sehgal, V.K. Application of S-SEBI Model for Crop Evapotranspiration Using Landsat-8 Data over Parts of North India. Geocarto Int. 2019, 34, 114–131. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L.; Fan, W. Estimation of Actual Evapotranspiration and Its Components in an Irrigated Area by Integrating the Shuttleworth-Wallace and Surface Temperature-Vegetation Index Schemes Using the Particle Swarm Optimization Algorithm. Agric. For. Meteorol. 2021, 307, 108488. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Amatya, D.M.; Irmak, S.; Gowda, P.; Sun, G.; Nettles, J.E.; Douglas-Mankin, K.R. Ecosystem Evapotranspiration: Challenges in Measurements, Estimates, and Modeling. Trans. ASABE 2016, 59, 555–560. [Google Scholar]
- Jovanovic, N.; Mu, Q.; Bugan, R.D.; Zhao, M. Dynamics of MODIS Evapotranspiration in South Africa. Water SA 2015, 41, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Guo, M.; Bai, P.; Li, J. Different Vegetation Information Inputs Significantly Affect the Evapotranspiration Simulations of the PT-JPL Model. Remote Sens. 2022, 14, 2573. [Google Scholar] [CrossRef]
- Norman, S.P.; Koch, F.H.; Hargrove, W.W. Review of Broad-Scale Drought Monitoring of Forests: Toward an Integrated Data Mining Approach. For. Ecol. Manag. 2016, 380, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.; Liu, X. Intercomparison and Evaluation of Three Global High-Resolution Evapotranspiration Products across China. J. Hydrol. 2018, 566, 743–755. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Wang, Y.; Long, Q.; Bai, P. Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China. Atmosphere 2019, 10, 542. [Google Scholar] [CrossRef] [Green Version]
- Hesadi, H.; Behnia, A.; Akhoond-Ali, A.M.; Kashefi Pour, S.M.; Daneshkar Arasteh, P.; Karimi, A.R. Estimation of Evapotranspiration of Rangeland Cover Using SEBAL Algorithm in Robat Mahidasht Region, Kermanshah, Iran. J. Rangel. Sci. 2022, 12, 48–62. [Google Scholar]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Awan, U.K.; Anwar, A.; Ahmad, W.; Hafeez, M. A Methodology to Estimate Equity of Canal Water and Groundwater Use at Different Spatial and Temporal Scales: A Geo-Informatics Approach. Environ. Earth Sci. 2016, 75, 409. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A Review of Remote Sensing Based Actual Evapotranspiration Estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth Data: Disruptive Changes in Earth Observation Data Management and Analysis? Int. J. Digit. Earth 2020, 13, 832–850. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Morton, C.; Parrish, G.E.; Schauer, M.; Khand, K.; Kagone, S.; Boiko, O.; Huntington, J. Mapping Actual Evapotranspiration Using Landsat for the Conterminous United States: Google Earth Engine Implementation and Assessment of the SSEBop Model. Remote Sens. Environ. 2022, 275, 113011. [Google Scholar] [CrossRef]
- Ejaz, N.; Bahrawi, J.; Alghamdi, K.M.; Rahman, K.U.; Shang, S. Drought Monitoring Using Landsat Derived Indices and Google Earth Engine Platform: A Case Study from Al-Lith Watershed, Kingdom of Saudi Arabia. Remote Sens. 2023, 15, 984. [Google Scholar] [CrossRef]
- Pei, T.; Wu, X.; Li, X.; Zhang, Y.; Shi, F.; Ma, Y.; Wang, P.; Zhang, C. Seasonal Divergence in the Sensitivity of Evapotranspiration to Climate and Vegetation Growth in the Yellow River Basin, China. J. Geophys. Res. Biogeosci. 2017, 122, 103–118. [Google Scholar] [CrossRef]
- Reig, P.; Gassert, F.; Luck, M. Orange-Senqu River Basin Study; Working Paper; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Chisanga, C.B.; Mubanga, K.H.; Sichigabula, H.; Banda, K.; Muchanga, M.; Ncube, L.; van Niekerk, H.J.; Zhao, B.; Mkonde, A.A.; Rasmeni, S.K. Modelling Climatic Trends for the Zambezi and Orange River Basins: Implications on Water Security. J. Water Clim. Chang. 2022, 13, 1275–1296. [Google Scholar] [CrossRef]
- Baudoin, M.-A.; Vogel, C.; Nortje, K.; Naik, M. Living with Drought in South Africa: Lessons Learnt from the Recent El Niño Drought Period. Int. J. Disaster Risk Reduct. 2017, 23, 128–137. [Google Scholar] [CrossRef]
- Mahlalela, P.T.; Blamey, R.C.; Hart, N.C.G.; Reason, C.J.C. Drought in the Eastern Cape Region of South Africa and Trends in Rainfall Characteristics. Clim. Dyn. 2020, 55, 2743–2759. [Google Scholar] [CrossRef]
- Walz, Y.; Min, A.; Dall, K.; Duguru, M.; de Leon, J.-C.V.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring Progress of the Sendai Framework Using a Geospatial Model: The Example of People Affected by Agricultural Droughts in Eastern Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [Google Scholar] [CrossRef]
- Senay, G.B.; Schauer, M.; Velpuri, N.M.; Singh, R.K.; Kagone, S.; Friedrichs, M.; Litvak, M.E.; Douglas-Mankin, K.R. Long-Term (1986–2015) Crop Water Use Characterization over the Upper Rio Grande Basin of United States and Mexico Using Landsat-Based Evapotranspiration. Remote Sens. 2019, 11, 1587. [Google Scholar] [CrossRef] [Green Version]
- ANBO (African Network of Basin Organizations). Source Book on African’s River Basin Organizations; ANBO: Kampala, Uganda, 2007. [Google Scholar]
- Lange, G.-M.; Mungatana, E.; Hassan, R. Water Accounting for the Orange River Basin: An Economic Perspective on Managing a Transboundary Resource. Ecol. Econ. 2007, 61, 660–670. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Niña: Vegetation Response Patterns over East and Southern Africa during the 1997–2000 Period. J. Clim. 2002, 15, 3096–3103. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a High-Resolution Precipitation Database (CHIRPS) over Cyprus for a 30-Year Period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Gao, F.; Zhang, Y.; Ren, X.; Yao, Y.; Hao, Z.; Cai, W. Evaluation of CHIRPS and Its Application for Drought Monitoring over the Haihe River Basin, China. Nat. Hazards 2018, 92, 155–172. [Google Scholar] [CrossRef]
- Guenang, G.M.; Kamga, F.M. Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades. J. Appl. Meteorol. Climatol. 2014, 53, 2310–2324. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Ahmadi, A.; Daccache, A.; Snyder, R.L.; Suvočarev, K. Meteorological Driving Forces of Reference Evapotranspiration and Their Trends in California. Sci. Total Environ. 2022, 849, 157823. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Feng, Q.; Wen, X.; Deo, R.C.; Yin, Z.; Yang, L.; Sheng, D. Random Forest Predictive Model Development with Uncertainty Analysis Capability for the Estimation of Evapotranspiration in an Arid Oasis Region. Hydrol. Res. 2020, 51, 648–665. [Google Scholar] [CrossRef]
- Sandri, M.; Zuccolotto, P. Analysis and Correction of Bias in Total Decrease in Node Impurity Measures for Tree-Based Algorithms. Stat. Comput. 2010, 20, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadou, S.; Nikolakopoulos, K.G. Multiple Linear Regression Models with Limited Data for the Prediction of Reference Evapotranspiration of the Peloponnese, Greece. Hydrology 2022, 9, 124. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; WMO: Geneva, Switzerland, 1991. [Google Scholar]
- Mosmann, V.; Castro, A.; Fraile, R.; Dessens, J.; Sánchez, J.-L. Detection of Statistically Significant Trends in the Summer Precipitation of Mainland Spain. Atmos. Res. 2004, 70, 43–53. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bisai, D.; Khan, A. Detection of Approximate Potential Trend Turning Points in Temperature Time Series (1941–2010) for Asansol Weather Observation Station, West Bengal, India. Atmos. Clim. Sci. 2013, 2014, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Rousta, I.; Taheri, S.M. Using Mann-Kendall and Time Series Techniques for Statistical Analysis of Long-Term Precipitation in Gorgan Weather Station. World Appl. Sci. J. 2013, 28, 902–908. [Google Scholar]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Jevrejeva, S.; Moore, J. Influence of the Arctic Oscillation and ENSO on Ice Conditions in the Baltic Sea: The Wavelet Approach. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003; p. 2786. [Google Scholar]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Goddard, L.; Gershunov, A. Impact of El Niño on Weather and Climate Extremes. In El Niño Southern Oscillation in a Changing Climate; Wiley: Hoboken, NJ, USA, 2020; pp. 361–375. [Google Scholar]
- Meza, F.J. Variability of Reference Evapotranspiration and Water Demands. Association to ENSO in the Maipo River Basin, Chile. Glob. Planet. Chang. 2005, 47, 212–220. [Google Scholar] [CrossRef]
- Yan, H.; Yu, Q.; Zhu, Z.-C.; Myneni, R.B.; Yan, H.-M.; Wang, S.-Q.; Shugart, H.H. Diagnostic Analysis of Interannual Variation of Global Land Evapotranspiration over 1982–2011: Assessing the Impact of ENSO. J. Geophys. Res. Atmos. 2013, 118, 8969–8983. [Google Scholar] [CrossRef]
- Senay, G.B.; Kagone, S.; Velpuri, N.M. Operational Global Actual Evapotranspiration: Development, Evaluation, and Dissemination. Sensors 2020, 20, 1915. [Google Scholar] [CrossRef] [PubMed]
- Rouault, M.; Richard, Y. Intensity and Spatial Extension of Drought in South Africa at Different Time Scales. Water SA 2003, 29, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, M.; Adams, S.V.; Arribas, A.; Prudden, R.; Robinson, N.; Saggioro, E.; Shepherd, T.G. Quantifying Causal Pathways of Teleconnections. Bull. Am. Meteorol. Soc. 2021, 102, E2247–E2263. [Google Scholar]
- Moura, M.M.; Dos Santos, A.R.; Pezzopane, J.E.M.; Alexandre, R.S.; da Silva, S.F.; Pimentel, S.M.; de Andrade, M.S.S.; Silva, F.G.R.; Branco, E.R.F.; Moreira, T.R.; et al. Relation of El Niño and La Niña Phenomena to Precipitation, Evapotranspiration and Temperature in the Amazon Basin. Sci. Total Environ. 2019, 651, 1639–1651. [Google Scholar] [CrossRef]
- Esquivel-Arriaga, G.; Cerano-Paredes, J.; Sánchez-Cohen, I.; Velásquez-Valle, M.A.; Flores-López, F.; Bueno-Hurtado, P. Temporal Analysis of Droughts (1922-2016) in the Upper Nazas River Basin Using SPI and Its Relationship with ENSO. Tecnol. Cienc. Agua 2019, 10, 126–153. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, M.; Labat, D.; Li, Y.; Bian, X.; Ding, Q. Characteristics and Drivers of Reference Evapotranspiration in Hilly Regions in Southern China. Water 2019, 11, 1914. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Zhang, Y. Increasing Tibetan Plateau Terrestrial Evapotranspiration Primarily Driven by Precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar] [CrossRef]
- Tan, Y.X.; Ng, J.L.; Huang, Y.F. Spatiotemporal Variability Assessment and Accuracy Evaluation of Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in Malaysia. Earth Sci. Inform. 2023, 16, 67–89. [Google Scholar] [CrossRef]
- Bazrafshan, J.; Cheraghalizadeh, M.; Shahgholian, K. Development of a Non-Stationary Standardized Precipitation Evapotranspiration Index (NSPEI) for Drought Monitoring in a Changing Climate. Water Resour. Manag. 2022, 36, 3523–3543. [Google Scholar] [CrossRef]
- Ntale, H.K.; Gan, T.Y. Drought Indices and Their Application to East Africa. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 1335–1357. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Ismail, Z.B. Changes in Reference Evapotranspiration and Its Driving Factors in Peninsular Malaysia. Atmos. Res. 2020, 246, 105096. [Google Scholar] [CrossRef]
Variable | Estimate | Std. Error | t-Value | p-Value | Significance |
---|---|---|---|---|---|
Niño | 0.0108229 | 0.0522778 | 0.207 | 0.836184 | |
DMI | −0.2653161 | 0.1432571 | −1.852 | 0.065380 | |
PWD | −0.0006147 | 0.0025689 | −0.239 | 0.811112 | |
PDSI | 0.0909938 | 0.0284022 | 3.204 | 0.001561 | ** |
SM | 0.0142855 | 0.0261054 | 0.547 | 0.584787 | |
VCI | 0.0135599 | 0.0045051 | 3.010 | 0.002923 | ** |
Precip | 0.0124721 | 0.0028787 | 4.333 | 2.25 × 10−5 | *** |
SPI-6 | −0.2950571 | 0.0775004 | −3.807 | 0.000183 | *** |
SPI-12 | 0.1270774 | 0.0522455 | 2.432 | 0.015813 | * |
Temp | 0.1141234 | 0.0211420 | 5.398 | 1.76 × 10−7 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahasa, P.S.; Xulu, S.; Mbatha, N. Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data. Water 2023, 15, 1501. https://doi.org/10.3390/w15081501
Mahasa PS, Xulu S, Mbatha N. Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data. Water. 2023; 15(8):1501. https://doi.org/10.3390/w15081501
Chicago/Turabian StyleMahasa, Pululu S., Sifiso Xulu, and Nkanyiso Mbatha. 2023. "Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data" Water 15, no. 8: 1501. https://doi.org/10.3390/w15081501
APA StyleMahasa, P. S., Xulu, S., & Mbatha, N. (2023). Characterization of Evapotranspiration in the Orange River Basin of South Africa-Lesotho with Climate and MODIS Data. Water, 15(8), 1501. https://doi.org/10.3390/w15081501