Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers
Abstract
:1. Introduction
2. Study Area and Data
3. Method
3.1. Modified Normalized Difference Water Index (MNDWI)
3.2. Morphological Feature Parameter Calculation Method
3.2.1. Shoreline Change Rate
3.2.2. Area Change Rate of Mid-Channel Bar
3.2.3. Sediment Deposition Amount of Beach Trough
3.3. Vegetation Fraction Coverage
3.4. Cluster Analysis
3.5. Cumulative Slope Change Ratio
3.6. Visual Interpretation
4. Results
4.1. River Morphology Change Analysis
4.1.1. Analysis of Shoreline Evolution
4.1.2. Lateral Scouring-Deposition Area Variation
4.1.3. Change Trend of Mid-Channel Bar
4.1.4. Morphological Evolution Characteristics of Typical River Reach
4.2. Change of Scouring-Deposition Amount of Beach Trough
4.3. Analysis of Factors Influencing River Flow Production and Sand Production
4.4. Analysis of the Driving Forces of River Evolution
4.4.1. Three Gorges Dam
4.4.2. River Sand Mining
4.4.3. Boundary Conditions
4.4.4. Vegetation Fraction Coverage on Both Sides of the River
4.4.5. Heavy Rainfall and Flooding
5. Discussion
5.1. Morphological Evolution Characteristics of River Reach
5.2. Effects of Human Activities on River Channel Change
5.3. Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, S.; Chen, Z. Similarity and discrepancy of major delta processes on eastern coast of China. Acta Geogr. Sin. 1995, 50, 481–490. [Google Scholar]
- Luan, H.; Liu, T.; Gao, H.; Yang, G.; Lin, M. River bank protection of middle and lower reaches of Yangtze River under new flow and sediment condition: Case of levee collapse in Yangzhou City in 2017. Yangtze River 2019, 50, 14–19. [Google Scholar] [CrossRef]
- Ang, Z. Study on the Migration of channel and the bank collapse formation mechanism along the MOS section of the Yangtze River. J. Anhui Univ. Sci. Technol. 2018, 38, 72–76. [Google Scholar]
- Yang, L. Treatment and effect analysis of Qiujiangwei bank collapse in Taiziji reach of the Yangtze River under new water and sand condition. Water Conserv. Constr. Manag. 2021, 41, 11–16. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, W.; Zhu, L. Analysis for water and sand conditions of Lower Yellow River in typical year and its evolution characters of river bed. Heilongjiang Hydraul. Sci. Technol. 2017, 45, 5–7. [Google Scholar] [CrossRef]
- Jiuhe, B.; Shuiling, Z.; Chunhui, L.; Xiangen, X.; Xuan, W.; Qiang, L.; Xuesong, W. A longitudinal functional connectivity comprehensive index for multi-sluice flood control system in plain urban river networks. J. Hydrol. 2022, 613, 128362. [Google Scholar]
- EuiJeong, K.; Eunsong, J.; Yuno, D.; GeaJae, J.; HyunWoo, K.; Hyunbin, J. Impact of River-Reservoir Hybrid System on Zooplankton Community and River Connectivity. Sustainability 2022, 14, 5184. [Google Scholar]
- YeonMoon, C.; JiMin, K.; IkTae, A. Research on the Longitudinal Section of River Restoration Using Probabilistic Theory. Entropy 2021, 23, 965. [Google Scholar]
- Giona Bucci, M.; Schoenbohm, L.M. Tectono-Geomorphic Analysis in Low Relief, Low Tectonic Activity Areas: Case Study of the Temiskaming Region in the Western Quebec Seismic Zone (WQSZ), Eastern Canada. Remote Sens. 2022, 14, 3587. [Google Scholar] [CrossRef]
- Li, Q.; Cai, Q.; Fang, H. Channel evolvement and influence factors in Ningxia-Inner Mongolia reach of the Yelloe River. J. Arid. Land Resour. Environ. 2012, 26, 68–73. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Deng, S.; Zhang, X. Recent bank retreat processes and characteristics in the braided reach of the Lower Yellow River. Adv. Water Sci. 2015, 26, 517–525. [Google Scholar] [CrossRef]
- Tian, S.; Wang, W.; Xie, B.; Zhang, M. Fluvial processes of the downstream reaches of the reserviors in the Lower Yellow River. J. Geogr. Sci. 2016, 26, 1321–1336. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, B.; Zhou, Y.; Wang, K.; Han, S. Erosion and aggradation processes and calculation method for the Qingshuigou channel on the Yellow River Delta. Adv. Water Sci. 2018, 29, 322–330. [Google Scholar] [CrossRef]
- Zheng, S.; Edmonds, D.A.; Wu, B.; Han, S. Backwater controls on the evolution and avulsion of the Qingshuigou channel on the Yellow River Delta. Geomorphology 2019, 333, 137–151. [Google Scholar] [CrossRef]
- Chen, J.; Ji, M.; Lin, J.; Chen, J. Runoff-sediment characteristics and riverbed evolution of Ganjiang River sink. Adv. Sci. Technol. Water Resour. 2012, 32, 1–5. [Google Scholar]
- Jiang, C.; Li, C.; Li, Z.; Long, Y. Study of fluvial processes in Xiangtan-Haohekou Section of Xiangjiang River. J. Sediment Res. 2013, 3, 19–26. [Google Scholar] [CrossRef]
- Long, Y.; Liu, J.; Li, Z.; Jiang, C. Processes of typical mid-channel bars in the middle and lower Xiang River since 1980s. J. Sediment Res. 2017, 42, 8–15. [Google Scholar] [CrossRef]
- Steenhuis, T.S.; Tilahun, S.A.; Tesemma, Z.K.; Tebebu, T.Y.; Mohamed, Y.A. Soil Erosion and Discharge in the Blue Nile Basin: Trends and Challenges; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Ikeuchi, H.; Hirabayashi, Y.; Yamazaki, D.; Kiguchi, M.; Koirala, S.; Nagano, T.; Kotera, A.; Kanae, S. Modeling complex flow dynamics of fluvial floods exacerbated by sea level rise in the Ganges–Brahmaputra–Meghna delta. Environ. Res. Lett. 2015, 10, 124011. [Google Scholar] [CrossRef]
- Yuill, B.T.; Gaweesh, A.; Allison, M.A.; Meselhe, E.A. Morphodynamic evolution of a lower Mississippi River channel bar after sand mining. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2016, 41, 526–542. [Google Scholar] [CrossRef]
- Downs, P.W.; Piégay, H. Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: Implications, limitations, prospect. Geomorphology 2019, 338, 88–104. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Gaber, A. Meandering and bank erosion of the River Nile and its environmental impact on the area between Sohag and El-Minia, Egypt. Geosci. J. 2019, 4, 1–11. [Google Scholar] [CrossRef]
- Rozo, M.G.; Nogueira, A.; Castro, C.S. Remote sensing-based analysis of the planform changes in the Upper Amazon River over the period 1986–2006. J. S. Am. Earth Sci. 2014, 51, 28–44. [Google Scholar] [CrossRef]
- Feeney, C.J.; Chiverrell, R.C.; Smith, H.G.; Hooke, J.M.; Cooper, J.R. Modelling the decadal dynamics of reach-scale river channel evolution and floodplain turnover in CAESAR-Lisflood. Earth Surf. Process. Landf. 2020, 45, 1273–1291. [Google Scholar] [CrossRef]
- Midha, N.; Mathur, P.K. Channel characteristics and planform dynamics in the Indian Terai, Sharda River. Environ. Manag. 2014, 53, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Abate, M.; Nyssen, J.; Steenhuis, T.S.; Moges, M.M.; Tilahun, S.A.; Enku, T.; Adgo, E. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. J. Hydrol. 2015, 525, 152–164. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.M.; Haider, M.R.; Rahman, M.M.; Sarker, M.H. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology 2017, 276, 257–279. [Google Scholar] [CrossRef]
- Gao, C.; Wang, S. Evolution of the gravel-bedded anastomosing river within the Qihama reach of the First Great Bend of the Yellow River. J. Geogr. Sci. 2019, 29, 306–320. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Feng, Z.; Jiang, L.; Liu, Y.; Hu, J.; Zhu, J. Natural water surface of poyang lake monitoring based on remote sensing and the relationshipo with water level. J. Nat. Resour. 2013, 28, 1556–1568. [Google Scholar]
- Dai, S.; Yang, S.; Li, P. Regulation of the main river channel to the sediment discharge of the Yangtze River. Acta Geogr. Sin. 2006, 61, 461–470. [Google Scholar]
- Xu, T.; Wang, M.; Zhou, M.; Xiang, Y.; Huang, R. Effect of different regulation modes on river channel evolution in downstream of Three Gorges dam. Yangtze River 2016, 47, 6–11. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, W.; Yang, S. Study and simulation of fine sediment behavior in permanent backwater zone of Three Gorges Reservoir. J. Chongqing Jiaotong Univ. 2019, 38, 74–80+108. [Google Scholar]
- Shiming, Y.; Hongyan, Y.; Ligang, L. Analysis on Current Situation and Development Trend of Ecological Revetment Works in Middle and Lower Reaches of Yangtze River. Procedia Eng. 2012, 28, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Meirong, Z.; Junqiang, X.; Shanshan, D.; Zhiwei, L. Two-dimensional modeling of channel evolution under the influence of large-scale river regulation works. Int. J. Sediment Res. 2022, 37, 424–434. [Google Scholar]
- Yan, N.; Colombera, L.; Mountney, N.P. Evaluation of Morphodynamic Controls on the Preservation of Fluvial Meander-Belt Deposits. Geophys. Res. Lett. 2021, 48, e2021GL094622. [Google Scholar] [CrossRef]
- Yuanfang, C.; Yunping, Y.; Jinyun, D.; Zhaohua, S.; Yitian, L.; Lingling, Z. Evolution characteristics and drivers of the water level at an identical discharge in the Jingjiang reaches of the Yangtze River. J. Geogr. Sci. 2021, 30, 1633–1648. [Google Scholar]
- Lu, J.Y.; Huang, Y.; Wang, J. The analysis on reservoir sediment deposition and downstream river channel scouring after impoundment and operation of TGP. Eng. Sci. 2011, 9, 113–120. [Google Scholar]
- Chai, Y.; Li, Y.; Li, S.; Zhu, B.; Wang, J. Analysis of recent variation trend and cause of runoff and sediment load variations in the Yangtze River. J. Irrig. Drain. 2017, 36, 94–101. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.D.; Jiang, T.; Li, M. Channel changes of the Makou-Tianjiazhen reach in the middle Yangtze River during the past 40 years. J. Geogr. Sci. 2007, 17, 442–452. [Google Scholar] [CrossRef]
- Yin, P.; Dai, S.; Yu, X. Remote sensing analysis of evolution of the Yangtze River in Anhui province based on GIS. Surv. Mapp. 2011, 34, 28–33. [Google Scholar]
- Jia, L.-w.; Pan, S.-q.; Wu, C.-y. Effects of the anthropogenic activities on the morphological evolution of the Modaomen Estuary, Pearl River Delta, China. China Ocean. Eng. 2013, 27, 795–808. [Google Scholar] [CrossRef]
- Shuwei, Z.; Hao, H.; Shujian, X.; Heqin, C.; Zijun, L.; Enfeng, L. Spatial distribution and response of dunes to anthropogenic factors in the lower Yangtze River. Catena 2022, 212, 106045. [Google Scholar]
- Liu, X.; Yang, S.; Zhao, C.; Guan, Y. Analysis of factors affecting accuracy of snowmelt runoff model based on multi sourceremote sensing in the Yarlung Zangbo River Basin. J. Beijing Norm. Univ. 2015, 51, 606–612. [Google Scholar] [CrossRef]
- Yang, D.; Huang, X.; Shi, L.; Li, S. Erosin and siltation Monitoring Along the River Bank of Yangzhong City During 1973-2017 by Remote Sensing and Analyzing the Bank Collapse. Resour. Environ. Inthe Yangtze Basin 2018, 27, 2796–2804. [Google Scholar]
- Song, Z.; Ma, Y.; Tang, C. Remote-sensing Explanation of the Yangtze River Channel in Jiangxi Province. Remote Sens. Technol. Appl. 2005, 20, 415–419. [Google Scholar]
- Huang, J.; Lv, G. Application of Remote Sensing the Experiment of Digital Yangtze River Course. Resour. Environ. Inthe Yangtze Basin 2002, 11, 40–42. [Google Scholar]
- Gu, Y.; Qian, Y. Remote sensing monitoring in the Yangtze River in Jiangsu Application in Monitoring Management Information System. Jiangsu Water Resour. 2006, 3, 24–25. [Google Scholar] [CrossRef]
- Hu, C.; Hou, W. Study on treatment planning of main channels of middle and lower Yangtze River. Yangtze River 2013, 44, 52–55+79. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, Y.; Wu, B. Recent ecological transitions in China: Greening, browning, and influential factors. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kun, Z.; Yihe, L.; Bojie, F.; Ting, L. The effects of restoration on vegetation trends: Spatiotemporal variability and influencing factors. Earth Environ. Sci. Trans. R. Soc. Edinb. 2019, 109, 473–481. [Google Scholar]
- Wang, Y.; Zhang, J.; Tong, S.; Guo, E. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, H.; Du, L.; Liu, S.; Chai, F. Study on temporal distribution of precipitation in Beijing City during flooding period based on dynamic cluster analysis and fuzzy pattern recognition. J. China Hydrol. 2019, 39, 73–77. [Google Scholar]
- Wang, S.; Yan, Y.; Yan, M.; Zhao, X. Quantitative estimation of the impact of precipitation and human activities on runoff change of the Huangfuchuan River Basin. J. Geogr. Sci. 2012, 22, 906–918. [Google Scholar] [CrossRef]
- Li, N. The Impact of Human Activities on Stream Flow and Sediment in the Yangtze River Estuarine Area. Ph.D. Thesis, Nanjing University, Nanjing, China, 2016. [Google Scholar]
- Hao, Y.; Jia, D.; Zhang, X.; Wu, L.; Chen, C. Advances in research on the influnence of vegetation on river flow and bank morphology evolution. Hydro-Sci. Eng. 2022, 193, 1–11. [Google Scholar]
- Gan, C.; Wang, X.; Li, B.; Liang, Z.; Li, Z.; Wen, X. Changes of vegetation coverage during recent 18 years in Lianjiang River Watershed. Sci. Geogr. Sinica 2011, 31, 1019–1024. [Google Scholar] [CrossRef]
- Tao, S.; Kuang, T.; Peng, W.; Wang, G. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015: A case study of Yibin City. Acta Ecol. Sinica 2020, 40, 5029–5043. [Google Scholar]
- Qi, Y.; Zhang, F.; Chen, R.; Wang, Y. Vegetation coverage dynamics in northern slope Tianshan Mountains from 2001 to 2015. Acta Ecol. Sinica 2020, 40, 3677–3687. [Google Scholar]
- Wang, S.; Li, L.; Chen, W. Variations of bank shift rates along the Yinchaun Plain reach of the Yellow River and their influencing factors. J. Geogr. Sci. 2014, 24, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gou, J.; Dong, Z.; Wu, J.; Jia, X.; Zhao, Z.; Wang, W. Dynamics Change of River Bank and Factor Analysis in Ulan Buh Desert Section of the Yellow River. Res. Soiland Water Conserv. 2016, 23, 117–122. [Google Scholar] [CrossRef]
- Mei, Y.; Wang, J. Variation of channel lateral erosion/accretion and channel shrinkage rate in the Linhe Reach of Yellow River since1977. Acta Geogr. Sinica 2016, 71, 1509–1519. [Google Scholar]
- Wu, F.; Tong, C.; Torkelson, M.; Wang, Y. Evolution of shoals and vegetation of Jiuduansha in the Changjiang River Estuary of China in the last 30 years. Acta Oceanol. Sinica 2020, 39, 71–78. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, J.; Zhao, Y. A review of studies on the impact of hydraulic hub operations on downstream rivers. Technol. Manag. 2017, 545, 95–96. [Google Scholar]
- Peng, Y.; Xia, J.; Peng, J.; Shen, J. Response of the nearshore riverbed evolution to flow and sediment conditions in Jingjiang Reach. J. China Hydrol. 2018, 38, 11–16. [Google Scholar]
- Zhao, Z.; Yao, S.; Tang, F.; Qu, G.; Zhuang, L. Evolution law and trend of river bed in Xiongjiazhou to Chenglingji reach under erosion condition. Port Waterw. Eng. 2019, 8, 134–140. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Liu, X.; Shi, H. Study on varations of runoff and sediment load in the Upper Yangtze River and mainInfluence factors. J. Sediment Res. 2016, 1, 1–8. [Google Scholar] [CrossRef]
Imaging Date | Water Level at Hankou | Imaging Date | Water Level at Huangshi | Imaging Date | Water Level at Jiujiang |
---|---|---|---|---|---|
11 February 1989 | 14.20 | 4 February 1989 | 11.07 | 13 February 1989 | 9.72 |
5 March 1994 | 15.00 | 25 January 1994 | 10.95 | 2 January 1994 | 9.97 |
12 December 1999 | 15.47 | 25 December 1999 | 11.98 | 18 December 1999 | 10.11 |
13 December 2004 | 15.92 | 9 March 2004 | 12.35 | 30 January 2004 | 8.15 |
25 November 2009 | 14.49 | 22 February 2010 | 11.31 | 12 February 2009 | 8.31 |
20 November 2013 | 15.77 | 5 March 2014 | 12.34 | 6 November 2013 | 8.89 |
7 December 2019 | - | 15 January 2019 | - | 23 January 2019 | - |
Serial Number | Location | Content of Information | Time of Data | Data Source |
---|---|---|---|---|
1 | Hankou, Datong | Runoff volume, sediment load, annual median particle size | 2001–2018 | Changjiang Sediment Bulletin |
2 | Chenglingji-Hankou, Hankou-Hukou, Hukou-Datong | Flushing volume, flushing intensity | 1975–2019 | Hydrological Yearbook of the Middle and Lower Reaches of the Yangtze River |
3 | 68 meteorological stations | precipitation | 1989–2016 | National meteorological center |
Remote Sensing Image | Interpretation Key of Central Bar |
---|---|
Central bars take on an island-like shape and usually have some vegetation cover, such as trees and grass. | |
Surrounded by river water, a part of the river’s core is a sandy beach, which usually appears light yellow or brown in the image. |
Time | Maximum Change Amplitude (m) | Average Change Amplitude (m) | Change Rate (m/year) | |||
---|---|---|---|---|---|---|
Left Bank | Right Bank | Left Bank | Right Bank | Left Bank | Right Bank | |
1989–1994 | −373.8 | −238.8 | −44.3 (69) | −33.7 (46) | −8.9 (69) | −6.7 (46) |
629.3 | 744.5 | 55.5 (69) | 37.0 (92) | 11.1 (69) | 7.4 (92) | |
1994–1999 | −492.8 | −255.8 | −57.4 (37) | −27.6 (72) | −11.5 (37) | −5.5 (72) |
275.8 | 221.6 | 49.8 (101) | 37.5 (66) | 10.0 (101) | 7.5 (66) | |
1999–2004 | −1326.5 | −198.4 | −61.5 (96) | −31.1 (79) | −12.3 (96) | −6.2 (79) |
504.9 | 341.7 | 32.2 (42) | 28.5 (59) | 6.4 (42) | 5.7 (59) | |
2004–2009 | −382.4 | −681.8 | −43.1 (61) | −41.7 (80) | −8.6 (61) | −9.4 (80) |
456.0 | 387.7 | 29.3 (77) | 23.8 (58) | 5.9 (77) | 4.8 (58) | |
2009–2013 | −255.7 | −33.5 | −34.0 (21) | −14.1 (28) | −8.5 (21) | −3.5 (28) |
281.1 | 690.9 | 41.9 (117) | 43.6 (110) | 10.5 (117) | 10.9 (110) | |
2013–2019 | −255.5 | −33.5 | −35.5 (104) | 14.1 (28) | −5.9 (104) | −2.4 |
1442.7 | 690.8 | 84.2 (34) | 43.6 (110) | 14.0 (34) | 7.3 |
Time | Location | Scouring | Accretion | ||
---|---|---|---|---|---|
Area (km2) | Rate (km2/year) | Area (km2) | Rate (km2/year) | ||
1989–1994 | Left bank | 17.18 | 3.44 | 28.29 | 5.66 |
Right bank | 24.04 | 4.81 | 6.66 | 1.33 | |
1994–1999 | Left bank | 37.04 | 7.41 | 11.87 | 2.37 |
Right bank | 12.27 | 2.45 | 12.63 | 2.53 | |
1999–2004 | Left bank | 8.37 | 1.67 | 34.77 | 6.95 |
Right bank | 8.33 | 1.67 | 17.54 | 3.51 | |
2004–2009 | Left bank | 13.80 | 2.76 | 14.10 | 2.82 |
Right bank | 7.72 | 1.54 | 17.98 | 3.60 | |
2009–2013 | Left bank | 28.95 | 7.24 | 4.58 | 1.15 |
Right bank | 21.19 | 5.30 | 2.44 | 0.61 | |
2013–2019 | Left bank | 7.96 | 1.33 | 17.05 | 2.84 |
Right bank | 15.26 | 2.54 | 24.03 | 4.01 |
Project | Periods | Chenglingji-Hankou | Hankou-Hukou | Hukou-Datong |
---|---|---|---|---|
Total scouring-deposition amount | 1975–1996 | 27,380 | 24,408 | −2270 |
1996–1998 | −9960 | 25,632 | 16,600 | |
1998–2002 | −6694 | −33,433 | 13,700 | |
2002–2006 | −5990 | −14,679 | −7986 | |
2006–2008 | 197 | 4693 | −7611 | |
2008–2019 | −33,380 | −41,439 | −21,569 | |
2002–2019 | −39,173 | −51,425 | −37,166 |
Contribution Rate Data | Ta | Tb | Precipitation (CP) | Human Activities (CH) |
---|---|---|---|---|
Precipitation (YP) | 1137.6 | 1056 | - | - |
Runoff volume (YR) | 7185.3 | 6678.5 | 101.70% | −1.70% |
Sediment load (YS) | 2.054 | 0.9214 | 13.01% | 86.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Li, W.; Chen, S.; Zeng, J.; Tong, C.; Zhou, J.; Xiang, T.; Zhang, J.; Li, C.; Ye, Y.; et al. Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers. Water 2023, 15, 1484. https://doi.org/10.3390/w15081484
Dai X, Li W, Chen S, Zeng J, Tong C, Zhou J, Xiang T, Zhang J, Li C, Ye Y, et al. Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers. Water. 2023; 15(8):1484. https://doi.org/10.3390/w15081484
Chicago/Turabian StyleDai, Xiaoai, Wenyu Li, Shijin Chen, Jianwen Zeng, Chenbo Tong, Jiayun Zhou, Tianyu Xiang, Junjun Zhang, Cheng Li, Yakang Ye, and et al. 2023. "Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers" Water 15, no. 8: 1484. https://doi.org/10.3390/w15081484
APA StyleDai, X., Li, W., Chen, S., Zeng, J., Tong, C., Zhou, J., Xiang, T., Zhang, J., Li, C., Ye, Y., Xu, L., & Jiang, X. (2023). Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers. Water, 15(8), 1484. https://doi.org/10.3390/w15081484