Characterizing the Synoptic-Scale Precursors of Extreme Precipitation Events in the Southeastern Edge of the Tibetan Plateau: Anomalous Evolution of Atmospheric Dynamic-Thermal Structure
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Selection of Regional Extreme Precipitation Events
2.2.2. Composite Analysis of Regional Extreme Precipitation Events
2.2.3. Analysis Method for Wave Action Flux
2.2.4. Water Vapor Flux and Its Divergence
3. Results
3.1. Precipitation Characteristics on the Southeastern Edge of the Tibetan Plateau
3.2. Atmospheric Circulation Pattern and Temperature and Humidity Characteristics during Regional Extreme Precipitation
3.3. Evolution Characteristics of Synoptic-Scale Circulations and Temperature and Humidity Anomalies before Regional Extreme Precipitation
3.3.1. Anomalies of Synoptic-Scale Atmospheric Circulations and Geopotential Height
3.3.2. Wave Action Flux Anomaly before Regional Extreme Precipitation
3.3.3. Atmospheric Temperature and Humidity Structure and Convective Activity Anomaly
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, P.; Nie, J. Robust expansion of extreme midlatitude storms under global warming. Geophys. Res. Lett. 2022, 49, e2022GL099007. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos 2008, 113, 1639–1647. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; You, Q.; Ma, Q.; Meng, X. Probability distribution for the summer extreme precipitation in the Qinghai-Tibetan Plateau. Plateau Meteorol. 2017, 36, 1176–1187. (In Chinese) [Google Scholar]
- Dong, D.H.; Huang, G.; Tao, W.C.; Wu, R.G.; Hu, K.M.; Li, C.F. Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int. J. Climatol. 2018, 38, 2112–2125. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Evaluation of high-resolution precipitation products over southwest China. J. Hydrometeorol. 2020, 21, 2691–2712. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, Y.; Zhong, L.; Yang, Y.; Guo, X.; Wang, C.; Xu, X.; Yang, K.; Xu, X.; Liu, L.; et al. Land surface processes and summer cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. Natl. Sci. Rev. 2020, 7, 500–515. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R.; Li, Y.Q. Convective characteristics and formation conditions in an extreme rainstorm on the eastern edge of the Tibetan Plateau. Atmosphere 2021, 12, 381. [Google Scholar] [CrossRef]
- Cai, S.; Huang, A.; Zhu, K.; Yang, B.; Yang, X.; Wu, Y.; Mu, X. Diurnal cycle of summer precipitation over the Eastern Tibetan Plateau and surrounding regions simulated in a convection-permitting model. Clim. Dyn. 2021, 57, 611–632. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Synoptic-scale circulation precursors of extreme precipitation events over southwest China during the rainy season. J. Geophys. Res. Atmos. 2021, 126, e2021JD035134. [Google Scholar] [CrossRef]
- Fu, S.; Li, W.; Sun, J.; Zhang, J.; Zhang, Y. Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin. Atmos. Sci. Let. 2015, 16, 127–134. [Google Scholar] [CrossRef]
- Fu, S.M.; Mai, Z.; Sun, J.H.; Li, W.L.; Ding, Y.; Wang, Y.Q. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci. 2019, 76, 3803–3830. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; Zhang, Y.; Fu, S. A 10-year climatology of mesoscale convective systems and their synoptic circulations in the Southwest Mountain area of China. J. Hydrometeorol. 2021, 22, 23–41. [Google Scholar] [CrossRef]
- Li, Y.D.; Wang, Y.; Song, Y.; Hu, L.; Gao, S.T.; Fu, R. Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation. J. Appl. Meteorol. Climatol. 2008, 47, 2679–2695. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.-M.; Sun, J.-H.; Zhao, S.-X.; Li, W.-L. An analysis of the eddy kinetic energy budget of a southwest vortex during heavy rainfall over South China. Atmos. Ocean. Sci. Lett. 2009, 2, 135–141. [Google Scholar] [CrossRef]
- Fu, S.M.; Sun, J.H.; Zhao, S.X.; Li, W.L. The energy budget of a southwest vortex with heavy rainfall over South China. Adv. Atmos. Sci. 2011, 28, 709–724. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Yang, S.; Xu, X.D. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Clim. Dyn. 2019, 53, 6891–6907. [Google Scholar] [CrossRef]
- Qian, C.; Ye, Y.; Zhang, W.; Zhou, T. Heavy rainfall event in mid-august 2020 in Southwestern China: Contribution of anthropogenic forcing and atmospheric circulation. Bull. Am. Meteorol. Soc. 2022, 103, S111–S117. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and Migratory Quasigeostrophic Eddies on a Zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.; Li, Y.; Wang, C. The study of a kind of circulations characters on sustaining heavy rain in Sichuan Basin. Plateau Mt. Meteorol. Res. 2010, 30, 29–34. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain. Plateau Meteorol. 2010, 029, 819–831. (In Chinese) [Google Scholar]
- Wei, W.; Zhang, R.; Wen, M.; Rong, X.; Li, T. Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Clim. Dyn. 2014, 43, 1257–1269. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Singh, V.; Luo, M.; Xie, Z. Summer extreme precipitation in eastern China: Mechanisms and impacts. J. Geophys. Res. Atmos. 2017, 122, 2766–2778. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Wang, X.; Luo, X.; Yang, D.; Zhou, W.; Tan, Y.; Yan, H. Remote impact of North Atlantic sea surface temperature on rainfall in southwestern China during boreal spring. Clim. Dyn. 2018, 50, 541–553. [Google Scholar] [CrossRef]
- Xu, X.; Huang, A.; Huang, D.; Zhang, Y.; Gu, C.; Cai, S.; Tang, Y.; Zhao, Z.; Zeng, J. What are the dominant synoptic patterns leading to the summer regional hourly extreme precipitation events over central-eastern Tibetan Plateau and Sichuan Basin? Geophys. Res. Lett. 2023, 50, e2022GL102342. [Google Scholar] [CrossRef]
- Yi, S.J.; Zheng, F.; Xiao, T. Comparative analysis of environmental fields of two typical rainstorm cases in southwest China. Clim. Environ. Res. 2019, 24, 73–115. (In Chinese) [Google Scholar]
- Qian, Q.; Wu, R.; Jia, X. Persistence and nonpersistence of East and Southeast Asian rainfall anomaly pattern from spring to summer. J. Geophys. Res. Atmos. 2020, 125, e2020JD033404. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Wu, P.; Wen, M.; Duan, J. Roles of Tibetan Plateau vortices in the heavy rainfall over southwestern China in early July 2018. Atmos. Res. 2020, 245, 105059. [Google Scholar] [CrossRef]
- Ni, C.; Li, G.; Xiong, X. Analysis of a vortex precipitation event over Southwest China using AIRS and in situ measurements. Adv. Atmos. Sci. 2017, 34, 559–570. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, D.; Yang, R.; Yang, H. Predecessor rain events over China’s low-latitude highlands associated with Bay of Bengal tropical cyclones. Clim. Dyn. 2018, 50, 825–843. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Yu, F. Analysis of a Rainstorm Process under the Joint Action of Westerly Trough and Typhoon in Sichuan Basin. Plateau Mt. Meteorol. Res. 2020, 40, 11–17. (In Chinese) [Google Scholar]
Date | Area-Ave-Pre (mm) | Date | Area-Ave-Pre (mm) | Date | Area-Ave-Pre (mm) |
---|---|---|---|---|---|
2 August 2018 | 20.45 | 8 July 2005 | 14.45 | 22 June 2003 | 13.33 |
19 July 2003 | 20.38 | 24 June 2019 | 14.45 | 19 June 2014 | 13.26 |
22 June 2011 | 19.79 | 16 August 2002 | 14.44 | 17 July 2020 | 13.24 |
28 June 2014 | 19.54 | 21 August 2010 | 14.43 | 9 July 2005 | 13.22 |
16 August 2015 | 18.83 | 9 July 2020 | 14.39 | 25 July 2020 | 13.19 |
16 August 2020 | 18.14 | 19 June 2009 | 14.35 | 3 August 2009 | 13.11 |
29 June 2015 | 17.76 | 25 June 2009 | 14.34 | 7 July 2004 | 13.11 |
6 July 2017 | 17.74 | 18 July 2013 | 14.33 | 27 July 2012 | 13.08 |
22 July 2019 | 17.7 | 30 August 2002 | 14.29 | 2 July 2017 | 12.96 |
29 June 2018 | 17.68 | 19 July 2007 | 14.21 | 28 July 2018 | 12.96 |
10 August 2002 | 17.56 | 20 June 2013 | 14.19 | 13 June 2020 | 12.85 |
17 August 2020 | 17.49 | 21 June 2009 | 14.11 | 17 August 2015 | 12.83 |
29 June 2020 | 17.47 | 30 June 2004 | 14.08 | 18 August 2020 | 12.76 |
11 June 2002 | 17.39 | 21 July 2016 | 14.05 | 29 June 2002 | 12.73 |
21 June 2003 | 17.27 | 6 June 2002 | 13.98 | 8 August 2015 | 12.65 |
30 August 2020 | 17.19 | 29 June 2012 | 13.98 | 30 June 2020 | 12.62 |
14 July 2014 | 16.99 | 11 August 2001 | 13.98 | 8 July 2019 | 12.58 |
18 July 2019 | 16.93 | 17 July 2010 | 13.97 | 29 June 2016 | 12.52 |
14 July 2015 | 16.34 | 4 July 2016 | 13.93 | 8 August 2017 | 12.52 |
6 July 2006 | 16.27 | 20 August 2002 | 13.84 | 21 June 2018 | 12.5 |
8 August 2003 | 16.27 | 7 June 2006 | 13.81 | 4 July 2002 | 12.41 |
21 July 2012 | 15.88 | 15 July 2012 | 13.8 | 8 July 2004 | 12.38 |
9 June 2002 | 15.82 | 9 August 2001 | 13.77 | 28 June 2010 | 12.36 |
30 June 2008 | 15.64 | 10 August 2007 | 13.73 | 10 June 2008 | 12.32 |
18 August 2015 | 15.51 | 24 August 2015 | 13.73 | 28 July 2019 | 12.29 |
10 August 2018 | 15.38 | 5 July 2016 | 13.72 | 17 July 2007 | 12.28 |
7 August 2017 | 15.36 | 23 June 2017 | 13.65 | 9 August 2014 | 12.27 |
17 August 2014 | 15.14 | 29 June 2009 | 13.65 | 17 July 2016 | 12.25 |
28 June 2009 | 15.14 | 4 July 2013 | 13.65 | 22 July 2012 | 12.25 |
3 August 2015 | 15.11 | 28 August 2013 | 13.43 | 3 July 2012 | 12.14 |
30 July 2009 | 14.91 | 7 August 2013 | 13.43 | 31 July 2009 | 12.13 |
3 July 2008 | 14.76 | 11 August 2014 | 13.4 | 17 June 2020 | 12.1 |
4 July 2004 | 14.58 | 29 June 2017 | 13.4 | ||
6 July 2014 | 14.47 | 9 July 2010 | 13.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, B.; Zhao, R.; Xu, X. Characterizing the Synoptic-Scale Precursors of Extreme Precipitation Events in the Southeastern Edge of the Tibetan Plateau: Anomalous Evolution of Atmospheric Dynamic-Thermal Structure. Water 2023, 15, 1407. https://doi.org/10.3390/w15071407
Chen L, Chen B, Zhao R, Xu X. Characterizing the Synoptic-Scale Precursors of Extreme Precipitation Events in the Southeastern Edge of the Tibetan Plateau: Anomalous Evolution of Atmospheric Dynamic-Thermal Structure. Water. 2023; 15(7):1407. https://doi.org/10.3390/w15071407
Chicago/Turabian StyleChen, Longguang, Bin Chen, Ruiyu Zhao, and Xiangde Xu. 2023. "Characterizing the Synoptic-Scale Precursors of Extreme Precipitation Events in the Southeastern Edge of the Tibetan Plateau: Anomalous Evolution of Atmospheric Dynamic-Thermal Structure" Water 15, no. 7: 1407. https://doi.org/10.3390/w15071407
APA StyleChen, L., Chen, B., Zhao, R., & Xu, X. (2023). Characterizing the Synoptic-Scale Precursors of Extreme Precipitation Events in the Southeastern Edge of the Tibetan Plateau: Anomalous Evolution of Atmospheric Dynamic-Thermal Structure. Water, 15(7), 1407. https://doi.org/10.3390/w15071407