Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The General Design of Water Quality Monitoring System (IoT-WQMS)
2.2. Water Quality Monitoring Hardware Design
2.2.1. Microcontroller Modules
2.2.2. Sensor Module
2.2.3. LoRa Modules
2.2.4. Power Modules
2.3. System Software Architecture
2.3.1. Water Quality Collection Terminal Software Design
2.3.2. LoRa Transport Layer Software Design
2.3.3. Server Application Layer Software Design
2.4. Multinode, Anomaly Detector, and LoRa Testing of the (IoT-WQMS)
2.4.1. Indoor Multinode Testing
2.4.2. Anomaly Detection Module Validation
2.4.3. LoRa Validation
3. Results
3.1. Indoor Multinode Testing Validation of the IoT-WQMS
3.2. Anomaly Detection
4. Outdoor Long-Distance Communication Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coraggio, E.; Han, D.; Gronow, C.; Tryfonas, T. Water Quality Sampling Frequency Analysis of Surface Freshwater: A Case Study on Bristol Floating Harbour. Front. Sustain. Cities 2022, 3, 791595. [Google Scholar] [CrossRef]
- Shuo, J.; Yonghui, Z.; Wen, R.; Kebin, T. The unmanned autonomous cruise ship for water quality monitoring and sampling. In Proceedings of the 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 700–703. [Google Scholar]
- Ayaz, M. Mobile unsupervised platform for real-time ocean water quality monitoring. J. Control Eng. Appl. Inform. 2019, 21, 79–88. [Google Scholar]
- Park, J.; Kim, K.T.; Lee, W.H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 2020, 12, 510. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wei, S.; Wen, X.; Qiu, X. Analysis and prediction of big stream data in real-time water quality monitoring system. J. Ambient. Intell. Smart Environ. 2020, 12, 393–406. [Google Scholar] [CrossRef]
- Ahmed, U.; Mumtaz, R.; Anwar, H.; Mumtaz, S.; Qamar, A.M. Water quality monitoring: From conventional to emerging technologies. Water Supply 2020, 20, 28–45. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Düştegör, D. Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Martínez, R.; Vela, N.; El Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water 2020, 12, 1096. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.R.; Ibrahim, A. VLSI design of energy efficient computational centric smart objects for IoT. In Proceedings of the 2018 15th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 129–138. [Google Scholar]
- Ishino, M.; Koizumi, Y.; Hasegawa, T. Leveraging proximity services for relay device discovery in user-provided IoT networks. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 553–558. [Google Scholar]
- Gao, G.; Xiao, K.; Chen, M. An intelligent IoT-based control and traceability system to forecast and maintain water quality in freshwater fish farms. Comput. Electron. Agric. 2019, 166, 105013. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things [IoT] and the energy sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef] [Green Version]
- Zeba, O.; Hayashi, K.; Kizaki, K.; Saruwatari, S.; Watanabe, T. QuadScatter: Computational Efficiency in Simultaneous Transmissions for Large-Scale IoT Backscatter Networks. IEEE Open J. Comput. Soc. 2021, 2, 334–345. [Google Scholar] [CrossRef]
- Verma, A.; Kaushal, S.; Sangaiah, A.K. Computational intelligence based heuristic approach for maximizing energy efficiency in internet of things. In Intelligent Decision Support Systems for Sustainable Computing; Springer: Berlin, Germany, 2017; pp. 53–76. [Google Scholar]
- Xiao, F. Complex pignistic transformation-based evidential distance for multisource information fusion of medical diagnosis in the IoT. Sensors 2021, 21, 840. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ma, L. An overview of outliers and detection methods in general for time series from IoT devices. In Proceedings of the International Conference on Computer Engineering and Networks, Xi’an, China, 16–18 October 2020; pp. 1180–1186. [Google Scholar]
- Zhang, Y.; Meratnia, N.; Havinga, P. Outlier detection techniques for wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2010, 12, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Adu-Manu, K.S.; Tapparello, C.; Heinzelman, W.; Katsriku, F.A.; Abdulai, J.-D. Water quality monitoring using wireless sensor networks: Current trends and future research directions. ACM Trans. Sens. Netw. (TOSN) 2017, 13, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Nair, K.K.; Abu-Mahfouz, A.M.; Lefophane, S. Analysis of the narrow band internet of things (NB-IoT) technology. In Proceedings of the 2019 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 6–8 March 2019; pp. 1–6. [Google Scholar]
- Zaraket, C.; Papageorgas, P.; Aillerie, M.; Agavanakis, K.; Salame, C. Cyber security vulnerabilities of smart metering based on LPWAN wireless communication technologies. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; p. 020050. [Google Scholar]
- Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A review of machine learning and deep learning techniques for anomaly detection in IoT data. Appl. Sci. 2021, 11, 5320. [Google Scholar] [CrossRef]
- Vigoya, L.; Fernandez, D.; Carneiro, V.; Cacheda, F. Annotated dataset for anomaly detection in a data center with IoT sensors. Sensors 2020, 20, 3745. [Google Scholar] [CrossRef]
- Pittino, F.; Puggl, M.; Moldaschl, T.; Hirschl, C. Automatic anomaly detection on in-production manufacturing machines using statistical learning methods. Sensors 2020, 20, 2344. [Google Scholar] [CrossRef] [Green Version]
- Basora, L.; Olive, X.; Dubot, T. Recent advances in anomaly detection methods applied to aviation. Aerospace 2019, 6, 117. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Deng, P.; Wan, J.; Zhang, D.; Vasilakos, A.V.; Rong, X. Data mining for the internet of things: Literature review and challenges. Int. J. Distrib. Sens. Netw. 2015, 11, 431047. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.M.; Amazonas, J.R. An outlier detect algorithm using big data processing and internet of things architecture. Procedia Comput. Sci. 2015, 52, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Fong, S.; Hu, S.; Wong, R.; Lin, W. A novel sensor data pre-processing methodology for the Internet of Things using anomaly detection and transfer-by-subspace-similarity transformation. Sensors 2019, 19, 4536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, N.; Bourgeau, T.; Chaouchi, H. Low-cost, Low-power Testbed for Establishing Network of LoRaWAN Nodes. In Proceedings of the EWSN, Lyon, France, 17–19 February 2020; pp. 192–194. [Google Scholar]
- Restuccia, F.; Pagani, M.; Mascitti, A.; Barrow, M.; Marinoni, M.; Biondi, A.; Buttazzo, G.; Kastner, R. ARTe: Providing real-time multitasking to Arduino. J. Syst. Softw. 2022, 186, 111185. [Google Scholar] [CrossRef]
- Podder, R.; Barai, R.K. Hybrid Encryption Algorithm for the Data Security of ESP32 based IoT-enabled Robots. In Proceedings of the 2021 Innovations in Energy Management and Renewable Resources, Kolkata, India, 5–7 February 2021; pp. 1–5. [Google Scholar]
- DFRobot Forum. Waterproof DS18B20 Digital Temperature Sensor (SKU: DFR0198). 2019. Available online: https://wiki.dfrobot.com/Waterproof_DS18B20_Digital_Temperature_Sensor__SKU_DFR0198 (accessed on 19 February 2023).
- Lin, J.-Y.; Tsai, H.-L.; Lyu, W.-H. An Integrated Wireless Multi-Sensor System for Monitoring the Water Quality of Aquaculture. Sensors 2021, 21, 8179. [Google Scholar] [CrossRef] [PubMed]
- Goparaju, S.U.N.; Vaddhiparthy, S.S.S.; Pradeep, C.; Vattem, A.; Gangadharan, D. Design of an IoT System for Machine Learning Calibrated TDS Measurement in Smart Campus. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14–31 June 2021; pp. 877–882. [Google Scholar]
- Singh, R.; Baz, M.; Gehlot, A.; Rashid, M.; Khurana, M.; Akram, S.V.; Alshamrani, S.S.; AlGhamdi, A. Water Quality Monitoring and Management of Building Water Tank Using Industrial Internet of Things. Sustainability 2021, 13, 8452. [Google Scholar] [CrossRef]
- Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Rashid, I.Z.M.; Sulaiman, N.M.N. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Banna, M.H.; Imran, S.; Francisque, A.; Najjaran, H.; Sadiq, R.; Rodriguez, M.; Hoorfar, M. Online drinking water quality monitoring: Review on available and emerging technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1370–1421. [Google Scholar] [CrossRef]
- Lambrou, T.P.; Anastasiou, C.C.; Panayiotou, C.G.; Polycarpou, M.M. A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sensors J. 2014, 14, 2765–2772. [Google Scholar] [CrossRef]
- González-Vidal, A.; Cuenca-Jara, J.; Skarmeta, A.F. Iot for water management: Towards intelligent anomaly detection. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 21–24 April 2019; pp. 858–863. [Google Scholar]
- Wang, M.; Fu, C.; Du, X. Decision-Tree Based Root Cause Localization for Anomalies in Smart IoT Systems. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Xiamen, China, 28–30 July 2021; pp. 1–5. [Google Scholar]
- Spanos, G.; Giannoutakis, K.M.; Votis, K.; Tzovaras, D. Combining statistical and machine learning techniques in IoT anomaly detection for smart homes. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, 11–13 September 2019; pp. 1–6. [Google Scholar]
- Iyer, S.; Thakur, S.; Dixit, M.; Katkam, R.; Agrawal, A.; Kazi, F. Blockchain and anomaly detection based monitoring system for enforcing wastewater reuse. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar]
- Bourelly, C.; Bria, A.; Ferrigno, L.; Gerevini, L.; Marrocco, C.; Molinara, M.; Cerro, G.; Cicalini, M.; Ria, A. A preliminary solution for anomaly detection in water quality monitoring. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 410–415. [Google Scholar]
- Garmaroodi, M.S.S.; Farivar, F.; Haghighi, M.S.; Shoorehdeli, M.A.; Jolfaei, A. Detection of anomalies in industrial iot systems by data mining: Study of christ osmotron water purification system. IEEE Internet Things J. 2020, 8, 10280–10287. [Google Scholar] [CrossRef]
- Ajaaj, A.A.; Mishra, A.K.; Khan, A.A. Evaluation of satellite and gauge-based precipitation products through hydrologic simulation in Tigris River basin under data-scarce environment. J. Hydrol. Eng. 2019, 24, 05018033. [Google Scholar] [CrossRef]
- Tamang, D.; Pozzebon, A.; Parri, L.; Fort, A.; Abrardo, A. Designing a reliable and low-latency LoRaWAN solution for environmental monitoring in factories at major accident risk. Sensors 2022, 22, 2372. [Google Scholar] [CrossRef]
- Amadou, I.; Foubert, B.; Mitton, N. LoRa in a haystack: A study of the LORA signal behavior. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–4. [Google Scholar]
- Magrin, D.; Capuzzo, M.; Zanella, A. A thorough study of LoRaWAN performance under different parameter settings. IEEE Internet Things J. 2019, 7, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Qadir, Q.M. Analysis of the reliability of LoRa. IEEE Commun. Lett. 2020, 25, 1037–1040. [Google Scholar] [CrossRef]
- Ray, P.P. A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 291–319. [Google Scholar]
- Samizadeh Nikoui, T.; Rahmani, A.M.; Balador, A.; Haj Seyyed Javadi, H. Internet of Things architecture challenges: A systematic review. Int. J. Commun. Syst. 2021, 34, e4678. [Google Scholar] [CrossRef]
- Gia, T.N.; Qingqing, L.; Queralta, J.P.; Zou, Z.; Tenhunen, H.; Westerlund, T. Edge AI in smart farming IoT: CNNs at the edge and fog computing with LoRa. In Proceedings of the 2019 IEEE AFRICON, Accra, Ghana, 25–27 September 2019; pp. 1–6. [Google Scholar]
- Awadallah, S.; Moure, D.; Torres-González, P. An internet of things [IoT] application on volcano monitoring. Sensors 2019, 19, 4651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreeram, M.; Sreeja, M. A novel architecture for IoT and smart community. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 486–491. [Google Scholar]
- Ha, S.; Seo, H.; Moon, Y.; Lee, D.; Jeong, J. A novel solution for NB-IoT cell coverage expansion. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–5. [Google Scholar]
Parameter | Value |
---|---|
Earth’s dielectric constant (relative permittivity) | 15.000 |
Earth conductivity (Siemens per meter) | 0.005 |
Atmospheric refraction constant (N) | 301.000 |
Frequency (MHz) | 915.000 |
Radio climate | Continental temperature |
Polarization | Vertical |
Situation fraction | 0.50 |
Time fraction | 0.90 |
Effective radiated power (ERP) in Watts | 0.1 |
Sensitivity (dBm) | −148 |
Transmitter coordinates | 24.050934, −104.702537 |
Receiver coordinates | 23.9917, −104.726421 |
Site | Coordinates | Distance ** (m) | PLR (%) | RSSI *** (dBi) | Modeled RSSI (dBi) | |
---|---|---|---|---|---|---|
Lat | Long | Single Lora | ||||
1 | 24.044 | −104.702 | 6312 | 4.2 | −109 | −90 |
2 | 24.051 | −104.702 | 7055 | N.S * | N.S | N.S |
3 | 23.986 | −104.702 | 6300 | 16.3 | −110 | −90 |
4 | 23.981 | −104.668 | 6000 | 4.8 | −113 | −90 |
5 | 23.968 | −104.690 | 4500 | 4.0 | −110 | −90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jáquez, A.D.B.; Herrera, M.T.A.; Celestino, A.E.M.; Ramírez, E.N.; Cruz, D.A.M. Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System. Water 2023, 15, 1351. https://doi.org/10.3390/w15071351
Jáquez ADB, Herrera MTA, Celestino AEM, Ramírez EN, Cruz DAM. Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System. Water. 2023; 15(7):1351. https://doi.org/10.3390/w15071351
Chicago/Turabian StyleJáquez, Armando Daniel Blanco, María T. Alarcon Herrera, Ana Elizabeth Marín Celestino, Efraín Neri Ramírez, and Diego Armando Martínez Cruz. 2023. "Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System" Water 15, no. 7: 1351. https://doi.org/10.3390/w15071351
APA StyleJáquez, A. D. B., Herrera, M. T. A., Celestino, A. E. M., Ramírez, E. N., & Cruz, D. A. M. (2023). Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System. Water, 15(7), 1351. https://doi.org/10.3390/w15071351