Multi-Actor Systems in Water–Energy Nexus: Identifying Critical Stakeholders in Floatovoltaic (Floating Photovoltaic) Project
Abstract
:1. Introduction
- RQ1 Who are the critical actors in a water–energy nexus?
- RQ2 What stakes do they hold in the nexus?
- RQ3 How do the actors interact in the multi-actor systems?
2. Literature Review
2.1. Critical Multi-Actor Systems in the Water–Energy Nexus
2.2. Multi-Actor Settings: The Involved and the Affected
2.3. Identifying Critical Actors: The Boundary Judgement
2.4. Theoretical Framework
3. Methodology
3.1. Research Design
3.2. Case Study
4. Results
4.1. Macro and Microgroups of Stakeholders
4.2. Their Stakes and Stakeholding Issues: Options of Actions
4.3. Positioning of Actors over the Options of Other Actors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Curmi, E.; Kopec, G.M.; Allwood, J.M.; Richards, K.S. China’s energy-water nexus–assessment of the energy sector’s compliance with the “3 Red Lines” industrial water policy. Energy Policy 2015, 82, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Anang, Z.; Padli, J.; Rashid, N.K.A.; Alipiah, R.M.; Musa, H. Factors Affecting Water Demand: Macro Evidence in Malaysia. J. Ekon. Malays. 2019, 53, 17–25. [Google Scholar] [CrossRef]
- Baganz, G.; Schrenk, M.; Körner, O.; Baganz, D.; Keesman, K.; Goddek, S.; Siscan, Z.; Baganz, E.; Doernberg, A.; Monsees, H.; et al. Causal Relations of Upscaled Urban Aquaponics and the Food-Water-Energy Nexus—A Berlin Case Study. Water 2021, 13, 2029. [Google Scholar] [CrossRef]
- Wei, W.; Cai, W.; Guo, Y.; Bai, C.; Yang, L. Decoupling relationship between energy consumption and economic growth in China’s provinces from the perspective of resource security. Resour. Policy 2020, 68, 101693. [Google Scholar] [CrossRef]
- Kumar, P.; Saroj, D.P. Water–energy–pollution nexus for growing cities. Urban Clim. 2014, 10, 846–853. [Google Scholar] [CrossRef]
- Frumhoff, P.C.; Burkett, V.; Jackson, R.B.; Newmark, R.; Overpeck, J.; Webber, M. Vulnerabilities and opportunities at the nexus of electricity, water and climate. Environ. Res. Lett. 2015, 10, 080201. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, L.; Zhong, S.; Liu, L.; Wu, N. Water–energy nexus in Shaanxi province of China. Water Supply 2018, 18, 2170–2179. [Google Scholar] [CrossRef]
- Becken, S.; McLennan, C. Evidence of the water-energy nexus in tourist accommodation. J. Clean. Prod. 2017, 144, 415–425. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, J.; Chen, L. Water-energy nexus in China’s industrial parks. Resour. Conserv. Recycl. 2020, 153, 104551. [Google Scholar] [CrossRef]
- Fayiah, M.; Dong, S.; Singh, S.; Kwaku, E.A. A review of water–energy nexus trend, methods, challenges and future prospects. Int. J. Energy Water Resour. 2020, 4, 91–107. [Google Scholar] [CrossRef]
- Ahmad, S.; Jia, H.; Chen, Z.; Li, Q.; Xu, C. Water-energy nexus and energy efficiency: A systematic analysis of urban water systems. Renew. Sustain. Energy Rev. 2020, 134, 110381. [Google Scholar] [CrossRef]
- Pueppke, S.G. Ancient WEF: Water–Energy–Food Nexus in the Distant Past. Water 2021, 13, 925. [Google Scholar] [CrossRef]
- Helerea, E.; Calin, M.D.; Musuroi, C. Water Energy Nexus and Energy Transition—A Review. Energies 2023, 16, 1879. [Google Scholar] [CrossRef]
- Macharia, P.; Kreuzinger, N.; Kitaka, N. Applying the Water-Energy Nexus for Water Supply—A Diagnostic Review on Energy Use for Water Provision in Africa. Water 2020, 12, 2560. [Google Scholar] [CrossRef]
- Shao, S.; Yang, Z.; Yang, L.; Zhang, X.; Geng, Y. Synergetic conservation of water and energy in China’s industrial sector: From the perspectives of output and substitution elasticities. J. Environ. Manag. 2020, 259, 110045. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, A.E.; Laspidou, C.S. The Water-Energy Nexus at City Level: The Case Study of Skiathos. Proceedings 2018, 2, 694. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Yao, L.; Wang, C.; Zhao, Y.; Peng, W. Simulation of Water–Energy Nexus of the Spatial Patterns of Crops and Irrigation Technologies in the Cascade Pump Station Irrigation District. Water 2022, 14, 1090. [Google Scholar] [CrossRef]
- Lv, J.; Li, Y.P.; Huang, G.H.; Suo, C.; Mei, H.; Li, Y. Quantifying the impact of water availability on China’s energy system under uncertainties: A perceptive of energy-water nexus. Renew. Sustain. Energy Rev. 2020, 134, 110321. [Google Scholar] [CrossRef]
- Rothausen, S.G.S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 2011, 1, 210–219. [Google Scholar] [CrossRef]
- Khalkhali, M.; Westphal, K.; Mo, W. The water-energy nexus at water supply and its implications on the integrated water and energy management. Sci. Total Environ. 2018, 636, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Roshandel, R.; Vakiloroaya, V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates. Energy Convers. Manag. 2019, 185, 396–409. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- El-Ghetany, H.; El-Awady, M.H. Selected Topics from the World Renewable Energy Congress WREC 2014. In Renewable Energy in the Service of Mankind Vol II; Springer: Berlin/Heidelberg, Germany, 2016; pp. 831–840. [Google Scholar] [CrossRef]
- Pin, L.A.; Pennink, B.J.W.; Balsters, H.; Sianipar, C.P.M. Technological appropriateness of biomass production in rural settings: Addressing water hyacinths (E. crassipes) problem in Lake Tondano, Indonesia. Technol. Soc. 2021, 66, 101658. [Google Scholar] [CrossRef]
- Bonnefoy, J.-L.; Page, C.L.; Rouchier, J.; Bousquet, F. Modelling spatial practices and social representations of space using multi-agent systems. Adv. Complex Syst. 2000, 3, 155–168. [Google Scholar] [CrossRef]
- Wang, N.; Heijnen, P.W.; Imhof, P.J. A multi-actor perspective on multi-objective regional energy system planning. Energy Policy 2020, 143, 111578. [Google Scholar] [CrossRef]
- Matos, S.; Silvestre, B.S. Managing stakeholder relations when developing sustainable business models: The case of the Brazilian energy sector. J. Clean. Prod. 2013, 45, 61–73. [Google Scholar] [CrossRef]
- Li, G.; Jiang, B.; Zhu, H.; Che, Z.; Liu, Y. Generative Attention Networks for Multi-Agent Behavioral Modeling. Proc. AAAI Conf. Artif. Intell. 2020, 34, 7195–7202. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Zhang, L.; Feger, K.-H.; Popp, J.; Sharpley, A. Multi-stakeholders’ preference for best management practices based on environmental awareness. J. Clean. Prod. 2019, 236, 117682. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, J.; Ishida, T. Compatibility between the local and social performances of multi-agent societies. Expert Syst. Appl. 2009, 36, 4443–4450. [Google Scholar] [CrossRef]
- Oetzel, J.; Getz, K. Why and how might firms respond strategically to violent conflict? J. Int. Bus. Stud. 2012, 43, 166–186. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Cultural Construction of what? Stakeholders’ Cultural Bias and its Effect on Acceptance of a New Public Information System. Int. Rev. Public Adm. 2010, 14, 71–96. [Google Scholar] [CrossRef]
- Chiang, H.-H.; Basu, M.; Sianipar, C.P.M.; Onitsuka, K.; Hoshino, S. Capital and symbolic power in water quality governance: Stakeholder dynamics in managing nonpoint sources pollution. J. Environ. Manag. 2021, 290, 112587. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Ponce-Ortega, J.M. Sustainable assessment of Water-Energy-Food Nexus at regional level through a multi-stakeholder optimization approach. J. Clean. Prod. 2021, 290, 125194. [Google Scholar] [CrossRef]
- Gerkensmeier, B.; Ratter, B.M.W. Governing coastal risks as a social process—Facilitating integrative risk management by enhanced multi-stakeholder collaboration. Environ. Sci. Policy 2018, 80, 144–151. [Google Scholar] [CrossRef]
- Roloff, J. Learning from Multi-Stakeholder Networks: Issue-Focussed Stakeholder Management. J. Bus. Ethics 2008, 82, 233–250. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, H.; Liu, Y.; Sun, Q.; Wennersten, R. Management of household electricity consumption under price-based demand response scheme. J. Clean. Prod. 2018, 204, 926–938. [Google Scholar] [CrossRef]
- Komendantova, N.; Marashdeh, L.; Ekenberg, L.; Danielson, M.; Dettner, F.; Hilpert, S.; Wingenbach, C.; Hassouneh, K.; Al-Salaymeh, A. Water–Energy Nexus: Addressing Stakeholder Preferences in Jordan. Sustainability 2020, 12, 6168. [Google Scholar] [CrossRef]
- Stoutenborough, J.W.; Vedlitz, A. Public Attitudes toward Water Management and Drought in the United States. Water Resour. Manag. 2014, 28, 697–714. [Google Scholar] [CrossRef]
- Lambooy, T. Corporate social responsibility: Sustainable water use. J. Clean. Prod. 2011, 19, 852–866. [Google Scholar] [CrossRef]
- Daher, B.; Hannibal, B.; Portney, K.E.; Mohtar, R.H. Toward creating an environment of cooperation between water, energy, and food stakeholders in San Antonio. Sci. Total Environ. 2019, 651, 2913–2926. [Google Scholar] [CrossRef]
- Hall, D.M.; Gilbertz, S.J.; Anderson, M.B.; Ward, L.C. Beyond “buy-in”: Designing citizen participation in water planning as research. J. Clean. Prod. 2016, 133, 725–734. [Google Scholar] [CrossRef]
- Gu, A.; Teng, F.; Wang, Y. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh Five-year Plan. Energy Convers. Manag. 2014, 85, 630–637. [Google Scholar] [CrossRef]
- Longhofer, W.; Schofer, E.; Miric, N.; Frank, D.J. NGOs, INGOs, and Environmental Policy Reform, 1970–2010. Soc. Forces 2016, 94, 1768. [Google Scholar] [CrossRef]
- Fayziev, A. Non-Governmental Organizations and Development: The Concept of “Place” and “Space”. Int. Lett. Soc. Humanist. Sci. 2013, 10, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Nawab, A.; Liu, G.; Meng, F.; Hao, Y.; Zhang, Y. Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy. Ecol. Model. 2019, 403, 44–56. [Google Scholar] [CrossRef]
- Liang, X.; Liang, Y.; Chen, C.; van Dijk, M.P. Implementing Water Policies in China: A Policy Cycle Analysis of the Sponge City Program Using Two Case Studies. Sustainability 2020, 12, 5261. [Google Scholar] [CrossRef]
- Deng, H.-M.; Wang, C.; Cai, W.-J.; Liu, Y.; Zhang, L.-X. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef]
- Keskinen, M.; Varis, O. Water-Energy-Food Nexus in Large Asian River Basins. Water 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Grubert, E.A.; Webber, M.E. Energy for water and water for energy on Maui Island, Hawaii. Environ. Res. Lett. 2015, 10, 064009. [Google Scholar] [CrossRef]
- Rodríguez-de-Francisco, J.C.; Duarte-Abadía, B.; Boelens, R. Payment for Ecosystem Services and the Water-Energy-Food Nexus: Securing Resource Flows for the Affluent? Water 2019, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube River basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Tomlinson, J.E.; Harou, J.J.; Ceseña, E.A.M.; Panteli, M.; Bottacin-Busolin, A.; Hurford, A.; Olivares, M.A.; Siddiqui, A.; Erfani, T.; et al. Spatial and sectoral benefit distribution in water-energy system design. Appl. Energy 2020, 269, 114794. [Google Scholar] [CrossRef]
- Ulrich, W. In memory of C. West Churchman (1913–2004) Reminiscences, retrospectives, and reflections. J. Organ. Transform. Soc. Change 2013, 1, 199–219. [Google Scholar] [CrossRef]
- Castaño, J.M.; Amstel, F.; van Hartmann, T.; Dewulf, G. Making dilemmas explicit through the use of a cognitive mapping collaboration tool. Futures 2017, 87, 37–49. [Google Scholar] [CrossRef]
- Wiati, C.B.; Indriyanti, S.Y.; Maharani, R.; Subarudi. Conflict resolution efforts through stakeholder mapping in Labanan Research Forest, Berau, East Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012063. [Google Scholar] [CrossRef] [Green Version]
- Hermawan, P.; Yoshanti, G. Unfolding the Problem of Batik Waste Pollution in Jenes River, Surakarta, using Critical System Heuristics and Drama-Theoretic Dilemma Analysis. In Systems Science for Complex Policy Making; Kuntoro, M., Utomo, S.P., Santi, N., Kyoichi, K., Eds.; Springer: Tokyo, Japan, 2016; pp. 93–108. [Google Scholar] [CrossRef]
- Setianto, N.A.; Cameron, D.C.; Gaughan, J.B. Structuring the problematic situation of smallholder beef farming in Central Java, Indonesia: Using systems thinking as an entry point to taming complexity. Int. J. Agric. Manag. 2014, 3, 164–174. [Google Scholar] [CrossRef]
- Maru, Y.T.; Woodford, K. Enhancing emancipatory systems methodologies for sustainable development. Syst. Pract. Action Res. 2001, 14, 61–77. [Google Scholar] [CrossRef]
- Ulrich, W.; Reynolds, M. Critical Systems Heuristics: The Idea and Practice of Boundary Critique. In Systems Approaches to Making Change: A Practical Guide, 2nd ed.; Martin, R., Sue, H., Eds.; Springer: London, UK, 2020; pp. 255–306. [Google Scholar] [CrossRef]
- Jackson, M.C. Systems Approaches to Management; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Ulrich, W. Systems Thinking as if People Mattered; Working Paper no. 23; University of Lincoln: Lincoln, UK, 1998. [Google Scholar]
- Goodman, J.; Korsunova, A.; Halme, M. Our Collaborative Future: Activities and Roles of Stakeholders in Sustainability-Oriented Innovation. Bus. Strategy Environ. 2017, 26, 731–753. [Google Scholar] [CrossRef]
- Akaka, M.A.; Chandler, J.D. Roles as resources: A social roles perspective of change in value networks. Mark. Theory 2011, 11, 243–260. [Google Scholar] [CrossRef]
- Ulrich, W. A Primer to Critical Systems Heuristics for Action Researchers; Centre for Systems Studies, University of Hull: Hull, UK, 1996. [Google Scholar]
- Schneider, F.; Buser, T. Promising degrees of stakeholder interaction in research for sustainable development. Sustain. Sci. 2018, 13, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Konnola, T.; Salo, A.; Brummer, V. Foresight for European coordination: Developing national priorities for the Forest-Based Sector Technology Platform. Int. J. Technol. Manag. 2011, 54, 438–459. [Google Scholar] [CrossRef]
- Ulrich, W. Critical Heuristics of Social Planning: A New Approach to Practical Philosophy; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Kapetas, L.; Kazakis, N.; Voudouris, K.; McNicholl, D. Water allocation and governance in multi-stakeholder environments: Insight from Axios Delta, Greece. Sci. Total Environ. 2019, 695, 133831. [Google Scholar] [CrossRef] [PubMed]
- Reypens, C.; Lievens, A.; Blazevic, V. Leveraging value in multi-stakeholder innovation networks: A process framework for value co-creation and capture. Ind. Mark. Manag. 2016, 56, 40–50. [Google Scholar] [CrossRef]
- Becker-Beck, U. Methods for Diagnosing Interaction Strategies. Small Group Res. 2001, 32, 259–282. [Google Scholar] [CrossRef]
- Boynton, P.M.; Greenhalgh, T. Selecting, designing, and developing your questionnaire. BMJ 2004, 328, 1312. [Google Scholar] [CrossRef] [Green Version]
- Trapani, K.; Santafé, M.R. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.S.; Barnes, T.M. Betting on Floatovoltaics: Floating PV Opportunities in the U.S. Scottsdale. In Proceedings of the Solar Summit 2019, Scottsdale, AR, USA, 14–15 May 2019. [Google Scholar]
- Hooper, T.; Armstrong, A.; Vlaswinkel, B. Environmental impacts and benefits of marine floating solar. Sol. Energy 2021, 219, 11–14. [Google Scholar] [CrossRef]
- Oda, T.; Moriwaki, K.; Tanigaki, K.; Nomura, Y.; Sumi, T. Irrigation ponds in the past, present, and future: A case study of the Higashi Harima Region, Hyogo Prefecture, Japan. J. Hydro-Environ. Res. 2019, 26, 19–24. [Google Scholar] [CrossRef]
- Takamura, N. Status of Biodiversity Loss in Lakes and Ponds in Japan. In The Biodiversity Observation Network in the Asia-Pacific Region: Toward Further Development of Monitoring, 1st ed.; Nakano, S., Yahara, T., Nakashizuka, T., Eds.; Springer: Tokyo, Japan, 2012; pp. 133–148. [Google Scholar] [CrossRef]
- Hoshino, S.; Fukamachi, T. An attempt to grasp the knowledge structure on local resource management: Case study of Inami town, Hyogo prefecture. J. Rural Plan. Assoc. 2014, 33, 25–28. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Okamoto, M.; Ogino, Y.; Satoh, M.; Hirota, J. Land Improvement Districts as Irrigation Associations in Japan Today. J. Irrig. Eng. Rural Plan. 2010, 1985, 32–35. [Google Scholar] [CrossRef]
- Shiono, M.; Ikegami, K.; Tsuruta, T. Climate Resilience of Collective Water Management in Rural Japan. J. Asian Rural Stud. 2017, 1, 162–171. [Google Scholar] [CrossRef]
- Guarte, J.M.; Barrios, E.B. Estimation Under Purposive Sampling. Comm. Stats. Simul. Comput. 2006, 35, 277–284. [Google Scholar] [CrossRef]
- Campbell, S.; Greenwood, M.; Prior, S.; Shearer, T.; Walkem, K.; Young, S.; Bywaters, D.; Walker, K. Purposive sampling: Complex or simple? Research case examples. J. Nurs. Res. 2020, 25, 652–661. [Google Scholar] [CrossRef]
- Setyagung, E.H.; Hani, U.; Azzadina, I.; Sianipar, C.P.M.; Ishii, T. Preserving Cultural Heritage: The Harmony between Art Idealism, Commercialization, and Triple-Helix Collaboration. Am. J. Tour. Manag. 2013, 2, 22–28. [Google Scholar] [CrossRef]
- Sianipar, C.P.M. Environmentally-appropriate technology under lack of resources and knowledge: Solar-powered cocoa dryer in rural Nias, Indonesia. Clean. Eng. Technol. 2022, 8, 100494. [Google Scholar] [CrossRef]
- Wiejaczka, Ł.; Piróg, D.; Soja, R.; Serwa, M. Community perception of the Klimkówka Reservoir in Poland. Int. J. Water Resour. Dev. 2014, 30, 649–661. [Google Scholar] [CrossRef]
- Mahmoudi, D.; Lubitow, A.; Christensen, M.A. Reproducing spatial inequality? The sustainability fix and barriers to urban mobility in Portland, Oregon. Urban Geogr. 2020, 41, 801–822. [Google Scholar] [CrossRef]
- Maryati, S.; Firman, T.; Humaira, A.N.S.; Febriani, Y.T. Benefit Distribution of Community-Based Infrastructure: Agricultural Roads in Indonesia. Sustainability 2020, 12, 2085. [Google Scholar] [CrossRef] [Green Version]
- Ezirim, O.N.; Okpoechi, C.U. Community-driven Development Strategy for Sustainable Infrastructure. J. Hum. Earth Future 2020, 1, 48–59. [Google Scholar] [CrossRef]
- Hanger, S.; Komendantova, N.; Schinke, B.; Zejli, D.; Ihlal, A.; Patt, A. Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco. Energy Res. Soc. Sci. 2016, 14, 80–89. [Google Scholar] [CrossRef]
- Chotia, V.; Rao, N.V.M. Investigating the interlinkages between infrastructure development, poverty and rural–urban income inequality. Stud. Econ. Financ. 2017, 34, 466–484. [Google Scholar] [CrossRef]
- Gagalyuk, T. Strategic role of corporate transparency: The case of Ukrainian agroholdings. Int. Food Agribus. Manag. Rev. 2017, 20, 257–278. [Google Scholar] [CrossRef]
- Takhumova, O. Rural Development as a Leading Factor in Economic Growth. In Proceedings of the 6th International Conference on Social, Economic, and Academic Leadership (ICSEAL-6-2019); Atlantis Press: Amsterdam, The Netherlands, 2020; pp. 275–279. [Google Scholar] [CrossRef]
- Do, M.H.; Park, S.C. Impacts of Vietnam’s new rural development policy on rural households’ income: Empirical evidence from the Heckman selection model. Int. Rev. Public Adm. 2019, 24, 229–245. [Google Scholar] [CrossRef]
- O’Faircheallaigh, C. Extractive industries and Indigenous peoples: A changing dynamic? J. Rural Stud. 2013, 30, 20–30. [Google Scholar] [CrossRef]
- Bebbington, A.; Bebbington, D.H.; Bury, J.; Lingan, J.; Muñoz, J.P.; Scurrah, M. Mining and Social Movements: Struggles over Livelihood and Rural Territorial Development in the Andes. World Dev. 2008, 36, 2888–2905. [Google Scholar] [CrossRef]
- Friedl, A.; Pondorfer, A.; Schmidt, U. Gender differences in social risk taking. J. Econ. Psychol. 2020, 77, 102182. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Arriaza, M.; Riesgo, L. An MCDM analysis of agricultural risk aversion. Eur. J. Oper. Res. 2003, 151, 569–585. [Google Scholar] [CrossRef]
- Nastis, S.A.; Mattas, K.; Baourakis, G. Understanding Farmers’ Behavior towards Sustainable Practices and Their Perceptions of Risk. Sustainability 2019, 11, 1303. [Google Scholar] [CrossRef] [Green Version]
- Sturtevant, B.R.; Miranda, B.R.; Yang, J.; He, H.S.; Gustafson, E.J.; Scheller, R.M. Studying Fire Mitigation Strategies in Multi-Ownership Landscapes: Balancing the Management of Fire-Dependent Ecosystems and Fire Risk. Ecosystems 2009, 12, 445. [Google Scholar] [CrossRef]
- Kalabamu, F.T.; Lyamuya, P. Small-scale land grabbing in Greater Gaborone, Botswana. Town Reg. Plan. 2021, 78, 34–45. [Google Scholar] [CrossRef]
- Heradstveit, D. Local Elites meet Foreign Corporations: The examples of Iran and Azerbaijan. CEMOTI 2001, 32, 257–295. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Fjeldstad, O.; Shifa, A.B. European colonization and the corruption of local elites: The case of chiefs in Africa. J. Econ. Behav. Organ. 2020, 179, 80–100. [Google Scholar] [CrossRef]
- Dean, D.H. Consumer Reaction to Negative Publicity. J. Bus. Commun. 2004, 41, 192–211. [Google Scholar] [CrossRef]
- Jia, M.; Tong, L.; Viswanath, P.V.; Zhang, Z. Word Power: The Impact of Negative Media Coverage on Disciplining Corporate Pollution. J. Bus. Ethics 2016, 138, 437–458. [Google Scholar] [CrossRef]
- Chimisso, D.; Seck, S.L. Human rights due diligence and extractive industries. In Research Handbook on Human Rights and Business; Deva, S., Birchall, D., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar] [CrossRef]
- Hahn, T. Reciprocal Stakeholder Behavior. Bus. Soc. 2015, 54, 9–51. [Google Scholar] [CrossRef]
- Hayibor, S. Equity and Expectancy Considerations in Stakeholder Action. Bus. Soc. 2012, 51, 220–262. [Google Scholar] [CrossRef]
- Rowley, T.I.; Moldoveanu, M. When Will Stakeholder Groups Act? An Interest- and Identity-Based Model of Stakeholder Group Mobilization. Acad. Manag. Rev. 2003, 28, 204–219. [Google Scholar] [CrossRef]
- Kirchherr, J.; Charles, K.J.; Walton, M.J. The interplay of activists and dam developers: The case of Myanmar’s mega-dams. Int. J. Water Resour. Dev. 2017, 33, 111–131. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y. Environmental civil society and governance in China. Int. J. Environ. Stud. 2007, 64, 59–69. [Google Scholar] [CrossRef]
- Veena, S.; Singh, R.; Gold, D.; Reed, P.; Bhave, A. How Should Diverse Stakeholder Preferences Shape Evaluations of Complex Water Resources Systems Robustness to Deeply Uncertain Changes? In AGU Fall Meeting 2021; American Geophysical Union: New Orleans, LA, USA, 2021. [Google Scholar]
- Raub, W.; Snijders, C. Gains, losses, and cooperation in social dilemmas and collective action: The effects of risk preferences. J. Math. Sociol. 1997, 22, 263–302. [Google Scholar] [CrossRef]
- Yesuf, M.; Bluffstone, R.A. Poverty, Risk Aversion, and Path Dependence in Low-Income Countries: Experimental Evidence from Ethiopia. Am. J. Agric. Econ. 2009, 91, 1022–1037. [Google Scholar] [CrossRef]
- Calvano, L. Multinational Corporations and Local Communities: A Critical Analysis of Conflict. J. Bus. Eth. 2008, 82, 793–805. [Google Scholar] [CrossRef]
- Korten, D.C. When corporations rule the world. Eur. Bus. Rev. 1998, 98. [Google Scholar] [CrossRef]
- Newenham-Kahindi, A.M. A Global Mining Corporation and Local Communities in the Lake Victoria Zone: The Case of Barrick Gold Multinational in Tanzania. J. Bus. Ethics 2011, 99, 253–282. [Google Scholar] [CrossRef]
- Camp, E. Cultivating Effective Brokers: A Party Leader’s Dilemma. Br. J. Political Sci. 2017, 47, 521–543. [Google Scholar] [CrossRef]
- Stuckelberger, S. Mobilizing and chasing: The voter targeting of negative campaigning–lessons from the Swiss case. Party Politics 2019, 27, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.A.B.E. The use of multi-criteria decision analysis to support the search for less conflicting policy options in a multi-actor context: Case study. J. Multi-Criteria Decis. Anal. 2001, 10, 111–125. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The Water-Energy-Food Nexus and the Transboundary Context: Insights from Large Asian Rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Bahri, M. Analysis of the water, energy, food and land nexus using the system archetypes: A case study in the Jatiluhur reservoir, West Java, Indonesia. Sci. Total Environ. 2020, 716, 137025. [Google Scholar] [CrossRef]
- Bréthaut, C.; Gallagher, L.; Dalton, J.; Allouche, J. Power dynamics and integration in the water-energy-food nexus: Learning lessons for transdisciplinary research in Cambodia. Environ. Sci. Policy 2019, 94, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Macharis, C.; Witte, A.; de Ampe, J. The multi-actor, multi-criteria analysis methodology (MAMCA) for the evaluation of transport projects: Theory and practice. J. Adv. Transp. 2009, 43, 183–202. [Google Scholar] [CrossRef]
- Bommel, S.V.; Röling, N.; Aarts, N.; Turnhout, E. Social learning for solving complex problems: A promising solution or wishful thinking? A case study of multi-actor negotiation for the integrated management and sustainable use of the Drentsche Aa area in the Netherlands. Environ. Policy Gov. 2009, 19, 400–412. [Google Scholar] [CrossRef]
- Turcksin, L.; Macharis, C.; Lebeau, K.; Boureima, F.; Van Mierlo, J.; Bram, S.; De Ruyck, J.; Mertens, L.; Jossart, J.-M.; Gorissen, L.; et al. A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium. Energy Policy 2011, 39, 200–214. [Google Scholar] [CrossRef]
- Aschhoff, N.; Vogel, R. Value conflicts in co-production: Governing public values in multi-actor settings. Int. J. Public Sect. Manag. 2018, 31, 775–793. [Google Scholar] [CrossRef]
- Nesheim, I.; Sundnes, F.; Enge, C.; Graversgaard, M.; Brink, C.V.D.; Farrow, L.; Glavan, M.; Hansen, B.; Leitão, I.A.; Rowbottom, J.; et al. Multi-Actor Platforms in the Water–Agriculture Nexus: Synergies and Long-Term Meaningful Engagement. Water 2021, 13, 3204. [Google Scholar] [CrossRef]
- Jayasuriya, S.; Zhang, G.; Yang, R.J. Exploring the impact of stakeholder management strategies on managing issues in PPP projects. Int. J. Constr. Manag. 2020, 20, 666–678. [Google Scholar] [CrossRef]
- Megdal, S.; Eden, S.; Shamir, E. Water Governance, Stakeholder Engagement, and Sustainable Water Resources Management. Water 2017, 9, 190. [Google Scholar] [CrossRef] [Green Version]
- Leonidou, E.; Christofi, M.; Vrontis, D.; Thrassou, A. An integrative framework of stakeholder engagement for innovation management and entrepreneurship development. J. Bus. Res. 2020, 119, 245–258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sianipar, C.P.M.; Chao, Y.-M.; Hoshino, S. Multi-Actor Systems in Water–Energy Nexus: Identifying Critical Stakeholders in Floatovoltaic (Floating Photovoltaic) Project. Water 2023, 15, 1241. https://doi.org/10.3390/w15061241
Sianipar CPM, Chao Y-M, Hoshino S. Multi-Actor Systems in Water–Energy Nexus: Identifying Critical Stakeholders in Floatovoltaic (Floating Photovoltaic) Project. Water. 2023; 15(6):1241. https://doi.org/10.3390/w15061241
Chicago/Turabian StyleSianipar, Corinthias P. M., Yi-Meng Chao, and Satoshi Hoshino. 2023. "Multi-Actor Systems in Water–Energy Nexus: Identifying Critical Stakeholders in Floatovoltaic (Floating Photovoltaic) Project" Water 15, no. 6: 1241. https://doi.org/10.3390/w15061241