# Discharge Coefficients of a Specific Vertical Slot Fishway Geometry—New Fitting Parameters

^{*}

## Abstract

**:**

## 1. Introduction

## 2. State-of-the-Art

**(a)**,

**(b)**] are commonly used to determine the discharge Q in vertical slot passes [2,6].

**(a)**The first approach is based on the flow through a slot as a channel constriction without flow transition according to Venturi or Poleni [18,19]:

**(b)**The second approach is based on the Torricelli equation, with a maximum flow velocity ${v}_{\mathrm{max}}$ (see Equation (1)):

## 3. Experimental Model Data

## 4. Results and Discussion

#### 4.1. General

#### 4.2. Discharge Coefficients in Accordance with Poleni

#### 4.3. Discharge Coefficients in Accordance with Torricelli

## 5. Summary and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Notations

$A,B$ | coefficients depending on the fishway geometry (-) |

${A}_{d}$ | discharge area (m^{2}) |

${\alpha}_{1},{\alpha}_{2},\beta $ | empirically determined coefficients (-) |

${b}_{0}$ | slot width (m) |

${C}_{d}$ | discharge coefficient (-) |

${C}_{d,1}$ | discharge coefficient according to Poleni (-) |

${C}_{d,2}$ | discharge coefficient according to Torricelli (-) |

${C}_{d,1,\mathrm{calc}}$ | calculated discharge coefficient (-) |

${C}_{d,2,\mathrm{calc}}$ | calculated discharge coefficient (-) |

$\Delta h$ | water level difference (m) |

$\Delta {h}_{m}$ | mean water level difference (m) |

$\Delta z$ | geodetic height difference (m) |

g | acceleration due to gravity (ms^{−2}) |

h | water depth (m) |

${h}_{1}$ | headwater depth (m) |

${h}_{2}$ | tailwater depth (m) |

${h}_{1,m}$ | calculated mean headwater depth (m) |

${h}_{2,m}$ | calculated mean tailwater depth (m) |

${{h}_{2}{h}_{1}}^{-1}$ | dimensionless calculated water depth (-) |

${{h}_{2,m}{h}_{1,m}}^{-1}$ | dimensionless calculated mean water depth (-) |

${h}_{m}$ | area-averaged mean water depth in the basin (m) |

${l}_{g}$ | guide element length (m) |

${l}_{g}{b}_{0}^{-1}$ | ratio of guide element length to slot width (-) |

L | basin length (m) |

$L{b}_{0}^{-1}$ | ratio of basin length to slot width (-) |

Q | discharge (m^{3}s^{−1}) |

${Q}^{*}$ | dimensionless discharge (-) |

${R}^{2}$ | coefficient of determination (-) |

S | slope (-) |

${v}_{\mathrm{max}}$ | maximum flow velocity (ms^{−1}) |

W | basin width (m) |

$W{L}^{-1}$ | ratio of basin width to basin length (-) |

$W{b}_{0}^{-1}$ | ratio of basin width to slot width (-) |

${y}_{0}$ | average flow depth (m) |

${y}_{0}{b}_{0}^{-1}$ | ratio of average flow depth to slot width (-) |

## References

- Water Framework Directive (WFD). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Off. J. 2000. Available online: https://www.semanticscholar.org/paper/Directive-2000-60-EC-of-the-European-Parliament-and-Other/a3115d92366398ea8b94c69d847b952041ac886d (accessed on 12 January 2023).
- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (DWA). Fischaufstiegsanlagen und fischpassierbare Bauwerke—Gestaltung, Bemessung, Qualitätssicherung. DWA-Regelw.
**2014**. Available online: https://www.baufachinformation.de/merkblatt-dwa-m-509-mai-2014/mb/241832 (accessed on 12 January 2023). (In German). - Mohlfeld, J.; Oertel, M. Ermittlung von Abflussbeiwerten zur hydraulischen Bemessung von Fischaufstiegsanlagen in Schlitzpassbauweise. WasserWirtschaft
**2021**, 2–3, 27–32. (In German) [Google Scholar] [CrossRef] - Mohlfeld, J. Einfluss unterschiedlicher Leitelemente auf die Hydraulik in flach geneigten Schlitzpässen; Shaker Verlag: Herzogenrath, Germany, 2020. (In German) [Google Scholar]
- Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng.
**1999**, 125, 351–360. [Google Scholar] [CrossRef] - Klein, J.; Oertel, M. Untersuchung von Einflussparametern auf die Abflussbemessung von Fischaufstiegsanlagen in Schlitzbauweise. Dresdner Wasserbauliche Mitteilungen
**2017**, 58, 291–300. (In German) [Google Scholar] - Bermúdez, M.; Puertas, J.; Cea, L.; Pena, L.; Balairón, L. Influence of pool geometry on the biological efficiency of vertical slot fishways. Ecol. Eng.
**2010**, 36, 1355–1364. [Google Scholar] [CrossRef] - Tarrade, L.; Texier, A.; David, L.; Larinier, M. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia
**2008**, 609, 177–188. [Google Scholar] [CrossRef][Green Version] - Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech.
**2011**, 11, 1–12. [Google Scholar] [CrossRef][Green Version] - Wang, R.W.; David, L.; Larinier, M. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowl. Manag. Aquat. Ecosyst.
**2010**, 396, 2. [Google Scholar] [CrossRef] - Stamou, A.I.; Mitsopoulos, G.; Rutschmann, P.; Biui, M.D. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid Mech.
**2018**, 18, 1435–1461. [Google Scholar] [CrossRef] - Tuhtan, J.A.; Fuentes-Pérez, J.; Toming, G.; Schneider, M.; Schwarzenberger, R.; Schletterer, M.; Kruusmaa, M. Man-made flows from a fish’s perspective: Autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line. Bioinspiration Biomim.
**2018**, 13, 046006. [Google Scholar] [CrossRef] [PubMed] - Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000. [Google Scholar]
- Liu, M.; Rajaratnam, N.; Zhu, D.Z. Mean Flow and Turbulence Structure in Vertical Slot Fishways. J. Hydraul. Eng.
**2006**, 132, 765–777. [Google Scholar] [CrossRef] - Rajaratnam, N.; van der Vinne, G.; Katopodis, C. Hydraulics of Vertical Slot Fishways. J. Hydraul. Eng.
**1986**, 112, 909–927. [Google Scholar] [CrossRef] - Puertas, J.; Pena, L.; Teijeiro, T. Experimental Approach to the Hydraulics of Vertical Slot Fishways. J. Hydraul. Eng.
**2004**, 13, 10–23. [Google Scholar] [CrossRef] - Rajaratnam, N.; Katopodis, C.; Solanki, S. New design for vertical slot fishways. Can. J. Civ. Eng.
**1992**, 19, 402–414. [Google Scholar] [CrossRef] - Fuentes-Pérez, J.; Sanz-Ronda, F.; Martínez de Azagra Paredes, A.; García-Vega, A. Modeling Water-Depth Distribution in Vertical-Slot Fishways under Uniform and Nonuniform Scenarios. J. Hydraul. Eng.
**2014**, 140, 06014016. [Google Scholar] [CrossRef][Green Version] - Fuentes-Pérez, J.; García-Vega, A.; Sanz-Ronda, F.; Martínez de Azagra Paredes, A. Villemonte’s approach: A general method for modeling uniform and non-uniform performance in stepped fishways. Knowl. Manag. Aquat. Ecosyst.
**2017**, 418, 23. [Google Scholar] [CrossRef][Green Version] - Krüger, F.; Heimerl, S.; Seidel, F.; Lehmann, B. Ein Diskussionsbeitrag zur hydraulischen Berechnung von Schlitzpässen. WasserWirtschaft
**2010**, 3, 30–36. (In German) [Google Scholar] [CrossRef] - Villemonte, J.R. Submerged-Weir Discharge Studies. Eng. News Rec.
**1947**, 139, 866–869. [Google Scholar] - Clay, C.H. Design of Fishways and Other Fish Facilities, 2nd ed.; Clay, C.H., Ed.; Department of Fisheries of Canada: Ottawa, ON, Canada, 1961.
- Federal Waterways Engineering and Research Institute (Bundesanstalt für Wasserbau—BAW). Dataset of Investigated Slot Passes. 2019. Available online: henry.baw.de (accessed on 12 January 2023).
- Höger, V.; Prinz, F.; Meltzer, J.V. Die Variabilität der Fließgeschwindigkeit in Schlitzpässen. HENRY-Hydraul. Eng. Respository
**2020**, 106, 23–32. (In German) [Google Scholar] - Klein, J.; Oertel, M. Influence of Inflow and Outflow Boundary Conditions on Flow Situation in Vertical Slot Fishways. IAHR Int. Symp. Hydraul. Struct.
**2018**, 7. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1166&context=ishs (accessed on 12 January 2023).

**Figure 1.**Photograph of an examplary vertical slot pass at a weir in North-Rhine Westphalia, Germany.

Design | W | L | ${\mathit{b}}_{0}$ | ${\mathit{WL}}^{-1}$ | ${\mathit{Wb}}_{0}^{-1}$ | ${\mathit{Lb}}_{0}^{-1}$ | S | Q | ${\mathit{l}}_{\mathit{g}}$ | ${\mathit{l}}_{\mathit{g}}{\mathit{b}}_{0}^{-1}$ | Typ of Guide Element | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Mohlfeld and Oertel (2021) [3] | 3 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.025; 0.050 | 0.016; 0.024; 0.032 | 0.190 | 1.60 | linear |

4 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | linear | |||

5 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | bevelled | |||

6 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | spline | |||

7 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | quadrant | |||

BAW (2019) [23] | 3 | 0.8 | 1.01 | 0.120 | 0.79 | 6.67 | 8.42 | 0.028; 0.039; | 0.010 to 0.035 | linear | ||

3 | 0.79 | 1.02 | 0.122 | 0.77 | 6.43 | 8.36 | 0.050; 0.028 | linear | ||||

Klein and Oertel (2018) [25] | 3 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.190 | 1.60 | linear | ||

3.67 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.190 | 1.60 | linear | |||

4 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.025; 0.050 | 0.008 to 0.044 | 0.178 | 1.50 | linear | |

5 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | bevelled | |||

6 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | spline | |||

7 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.178 | 1.50 | quadrant | |||

Klein and Oertel (2017) [6] | 37 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.005 to 0.056 | 0.190 | 1.60 | linear | |

52 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.050 | 0.190 | 1.60 | linear | ||

67 | 0.8 | 1.021 | 0.119 | 0.78 | 6.72 | 8.58 | 0.190 | 1.60 | linear | |||

Krüger et al. (2010) [20] | 1 | 3.3 | 4.5 | 0.45 | 0.73 | 7.33 | 10.00 | 0.056 | 0.769; 0.933; 1.101 | none | ||

Bermúdez et al. (2010) [7] | 2 | 0.3 | 0.38 | 0.168; 0.084; 0.043 | 0.80 | 1.79; 3.58; 7.16 | 2.24; 4.47; 8.94 | 0.050 | 0.0009 to 0.0270 | none | ||

2 | 0.3 | 0.75 | 0.168; 0.084 | 0.40 | 1.79; 3.58 | 4.47; 8.94 | none | |||||

2 | 0.3 | 1.50 | 0.168 | 0.20 | 1.79 | 8.94 | none | |||||

2 | 0.3 | 2.25 | 0.168 | 0.13 | 1.79 | 13.42 | none | |||||

2 | 0.3 | 0.28 | 0.126 | 1.07 | 2.39 | 2.24 | none | |||||

2 | 0.3 | 0.57 | 0.126; 0.043 | 0.53 | 2.39; 7.16 | 4.47; 13.42 | none | |||||

2 | 0.3 | 1.13 | 0.126; 0.084 | 0.27 | 2.39; 3.58 | 8.94; 13.42 | none | |||||

2 | 0.3 | 1.70 | 0.126 | 0.18 | 2.39 | 13.34 | none | |||||

2 | 0.3 | 0.19 | 0.084; 0.043 | 1.60 | 3.58; 7.16 | 2.24; 4.47 | none | |||||

2 | 0.3 | 0.095 | 0.043 | 3.20 | 7.16 | 2.24 | none | |||||

Puertas et al. (2004) [16] | 1 | 0.99 | 1.21 | 0.16 | 0.82 | 6.19 | 7.58 | 0.0570; 0.1005 | 0.0159 to 0.1250 | 0.243 | 1.52 | linear |

2 | 0.99 | 1.21 | 0.15 | 0.82 | 6.60 | 8.09 | none | |||||

Rajaratnam et al. (1992) [17] | 1 | 0.458 | 0.572 | 0.057 | 0.80 | 8.00 | 10.00 | 0.10 | 0.0009 to 0.026 | 0.086 | 1.50 | bevelled |

6 | 0.305 | 0.381 | 0.043 | 0.80 | 7.16 | 8.94 | 0.057; 0.10 | none | ||||

8 | 0.305 | 0.191 | 0.043 | 1.60 | 7.16 | 4.47 | 0.10; 0.149 | none | ||||

9 | 0.153 | 0.191 | 0.043 | 0.80 | 3.58 | 4.47 | 0.10; 0.149 | none | ||||

11 | 0.305 | 0.572 | 0.043 | 0.53 | 7.16 | 13.42 | 0.050; 0.10 | none | ||||

14 | 0.305 | 0.381 | 0.043 | 0.80 | 7.16 | 8.94 | 0.050; 0.10; 0.148 | 0.086 | 2.00 | linear | ||

15 | 0.305 | 0.381 | 0.043 | 0.80 | 7.16 | 8.94 | 0.050; 0.10; 0.148 | 0.086 | 2.00 | linear | ||

16 | 0.305 | 0.381 | 0.046 | 0.80 | 6.65 | 8.31 | 0.050; 0.10 | 0.092 | 2.00 | linear | ||

17 | 0.305 | 0.381 | 0.038 | 0.80 | 8.00 | 10.00 | 0.10; 0.150 | 0.057 | 1.50 | round | ||

18 | 0.305 | 0.381 | 0.038 | 0.80 | 8.00 | 10.00 | 0.10; 0.150 | 0.057 | 1.50 | spline |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kasischke, K.; Oertel, M.
Discharge Coefficients of a Specific Vertical Slot Fishway Geometry—New Fitting Parameters. *Water* **2023**, *15*, 1193.
https://doi.org/10.3390/w15061193

**AMA Style**

Kasischke K, Oertel M.
Discharge Coefficients of a Specific Vertical Slot Fishway Geometry—New Fitting Parameters. *Water*. 2023; 15(6):1193.
https://doi.org/10.3390/w15061193

**Chicago/Turabian Style**

Kasischke, Kimberley, and Mario Oertel.
2023. "Discharge Coefficients of a Specific Vertical Slot Fishway Geometry—New Fitting Parameters" *Water* 15, no. 6: 1193.
https://doi.org/10.3390/w15061193