Assessing Urban Flooding Extent of the Baunia Khal Watershed in Dhaka, Bangladesh
Abstract
:1. Introduction
2. Study Area and Approach
2.1. Methods for Assessing Urban Flooding Extent
2.1.1. IDF Curve for Dhaka
2.1.2. Spatial Changes of Baunia Khal
2.1.3. Runoff Estimation
2.1.4. Flood Area Analysis Using Satellite Images
3. Results
3.1. Extreme Rainfall Analysis Using IDF Curve
3.2. Spatial Changes of Baunia Khal
3.3. Flood Area Analysis from Satellite Images
3.4. Runoff Calculation
3.5. Peak Runoff Generation for Extreme Rainfall Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Urban Flooding | Waste Management | Water Quality | Water Price | Sanitation | Ranking | |
---|---|---|---|---|---|---|
Urban flooding | Urban flooding | Urban flooding | Urban flooding | Urban flooding | Urban flooding | 1st |
Waste management | Urban flooding | Waste management | Water quality | Waste management | Waste management | 3rd |
Water quality | Urban flooding | Water quality | Water quality | Water quality | Water quality | 2nd |
Water price | Urban flooding | Waste management | Water quality | Water price | Sanitation | 5th |
Sanitation | Urban flooding | Waste management | Water quality | Sanitation | Sanitation | 4th |
Appendix B
LULC | Soil Group A | Soil Group B | Soil Group C | Soil Group D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope: | <2% | 2–6% | >6% | <2% | 2–6% | >6% | <2% | 2–6% | >6% | <2% | 2–6% | >6% |
Forest | 0.08 | 0.11 | 0.14 | 0.1 | 0.14 | 0.18 | 0.12 | 0.16 | 0.20 | 0.15 | 0.20 | 0.25 |
Meadow | 0.14 | 0.22 | 0.3 | 0.2 | 0.28 | 0.37 | 0.26 | 0.35 | 0.44 | 0.30 | 0.40 | 0.50 |
Pasture | 0.15 | 0.25 | 0.37 | 0.23 | 0.34 | 0.45 | 0.30 | 0.42 | 0.52 | 0.37 | 0.50 | 0.62 |
Farmland | 0.14 | 0.18 | 0.21 | 0.16 | 0.21 | 0.28 | 0.20 | 0.25 | 0.34 | 0.24 | 0.29 | 0.41 |
Res. 1 acre | 0.22 | 0.26 | 0.29 | 0.24 | 0.28 | 0.34 | 0.28 | 0.32 | 0.40 | 0.31 | 0.35 | 0.46 |
Res. 1/2 acre | 0.25 | 0.29 | 0.32 | 0.28 | 0.32 | 0.36 | 0.31 | 0.35 | 0.42 | 0.34 | 0.38 | 0.46 |
Res. 1/3 acre | 0.28 | 0.32 | 0.35 | 0.3 | 0.35 | 0.39 | 0.33 | 0.38 | 0.45 | 0.36 | 0.4 | 0.5 |
Res. 1/4 acre | 0.3 | 0.34 | 0.37 | 0.33 | 0.37 | 0.42 | 0.36 | 0.40 | 0.47 | 0.38 | 0.42 | 0.52 |
Res. 1/8 acre | 0.33 | 0.37 | 0.4 | 0.35 | 0.39 | 0.44 | 0.38 | 0.42 | 0.49 | 0.41 | 0.45 | 0.54 |
Industrial | 0.85 | 0.85 | 0.86 | 0.85 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87 | 0.86 | 0.86 | 0.88 |
Commercial | 0.88 | 0.88 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.90 | 0.89 | 0.89 | 0.90 |
Street | 0.76 | 0.77 | 0.79 | 0.8 | 0.82 | 0.84 | 0.84 | 0.85 | 0.89 | 0.89 | 0.91 | 0.95 |
Parking | 0.95 | 0.96 | 0.97 | 0.95 | 0.96 | 0.97 | 0.95 | 0.96 | 0.97 | 0.95 | 0.96 | 0.97 |
Distributed area | 0.65 | 0.67 | 0.69 | 0.66 | 0.68 | 0.7 | 0.68 | 0.72 | 0.75 | 0.69 | 0.72 | 0.75 |
Cropland | 0.14 | 0.18 | 0.22 | 0.16 | 0.21 | 0.28 | 0.20 | 0.25 | 0.34 | 0.24 | 0.29 | 0.41 |
Forest | 0.08 | 0.11 | 0.14 | 0.10 | 0.14 | 0.18 | 0.12 | 0.16 | 0.20 | 0.l5 | 0.20 | 0.25 |
Grassland | 0.15 | 0.25 | 0.37 | 0.23 | 0.34 | 0.45 | 0.30 | 0.42 | 0.52 | 0.37 | 0.50 | 0.62 |
Mixed vegetation | 0.14 | 0.22 | 0.30 | 0.20 | 0.28 | 0.37 | 0.26 | 0.35 | 0.44 | 0.30 | 0.40 | 0.50 |
Artificial surfaces | 0.33 | 0.37 | 0.40 | 0.35 | 0.39 | 0.44 | 0.38 | 0.42 | 0.49 | 0.41 | 0.45 | 0.54 |
References
- United Nations. World Urbanization Prospects: The 2011 Revision. Department of Economic and Social Affairs: Popuation Division.. 2012. Available online: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf (accessed on 24 January 2023).
- Hammond, M.; Chen, A.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Mucke, P. World Risk Report 2018; Bundnis Entwicklung Hilft: Berlin, Germany, 2018. [Google Scholar]
- United Nations. World Population Prospects 2019—Volume II: Demographic Profiles; Department of Economic and Social Affairs, Population Division, United Nations (UN): New York, NY, USA, 2019. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2018 Revision; Department of Economic and Social Affairs, Population Division, United Nations (UN): New York, NY, USA, 2018. [Google Scholar]
- Paszkowski, A.; Goodbred, S., Jr.; Borgomeo, E.; Khan, M.S.A.; Hall, J.W. Geomorphic change in the Ganges-Brahmaputra-Meghna delta. Nat. Rev. Earth Environ. 2021, 2, 763–780. [Google Scholar] [CrossRef]
- Danso, S.; Addo, I.Y. Coping strategies of households affected by flooding: A case study of Sekondi-Takoradi Metropolis in Ghana. Urban Water J. 2016, 14, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of Flooded Urban Areas in High Reso-lution Synthetic Aperture Radar Images Using Double Scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [Google Scholar]
- Wang, R.-Q.; Mao, H.; Wang, Y.; Rae, C.; Shaw, W. Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data. Comput. Geosci. 2018, 111, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.T.; Mahfooz, Y.; Aftab, R.; Yen, Y.; Talib, M.A.; Rasool, A. Water quality and health risk of public drinking water sources: A study of filtration plants installed in Rawalpindi and Islamabad, Pakistan. Desalination Water Treat. 2020, 181, 239–250. [Google Scholar] [CrossRef]
- Brouwer, R.; Sharmin, D.F.; Elliott, S.; Liu, J.; Khan, M.R. Costs and benefits of improving water and sanitation in slums and non-slum neighborhoods in Dhaka, a fast-growing mega-city. Ecol. Econ. 2023, 207, 107763. [Google Scholar] [CrossRef]
- Gain, A.; Hoque, M. Flood risk assessment and its application in the eastern part of Dhaka City, Bangladesh. J. Flood Risk Manag. 2012, 6, 219–228. [Google Scholar] [CrossRef]
- Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Moors, E.; Alam Khan, M.S.; Warner, J.; van Scheltinga, C.T. Tipping points in adaptation to urban flooding under climate change and urban growth: The case of the Dhaka megacity. Land Use Policy 2018, 79, 496–506. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., et al., Eds.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Yang, L.; Smith, J.A.; Wright, D.B.; Baeck, M.L.; Villarini, G.; Tian, F.; Hu, H. Urbanization and climate change: An exami-nation of nonstationarities in urban flooding. J. Hydrometeorol. 2013, 14, 1791–1809. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Z.; Yang, Y. Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Clim. 2017, 37, 4586–4593. [Google Scholar] [CrossRef]
- Sohail, M.T.; Lin, X.; Lizhi, L.; Rizwanullah, M.; Nasrullah, M.; Yu, X.; Manzoor, Z.; Elis, R.J. Farmers’ Awareness about Impacts of Reusing Wastewater, Risk Perception and Adaptation to Climate Change in Faisalabad District, Pakistan. Pol. J. Environ. Stud. 2021, 30, 4663–4675. [Google Scholar] [CrossRef]
- Subah, Z.; Rashid, M.; Rashid, H. Impacts of Salinity Intrusion on Nitrogen Fixing Microbial Community of Sesbania bispinosa from Three Different Regions of Bangladesh. In Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18), Chittagong, Bangladesh, 30–31 March 2018. [Google Scholar]
- Kishtawal, C.M.; Niyogi, D.; Tewari, M.; Pielke, R.A.; Shepherd, J.M. Urbanization signature in the observed heavy rainfall climatology over India. Int. J. Climatol. 2010, 30, 1908–1916. [Google Scholar] [CrossRef] [Green Version]
- Mark, O.; Weesakul, S.; Apirumanekul, C.; Aroonnet, S.B.; Djordjević, S. Potential and limitations of 1D modelling of urban flooding. J. Hydrol. 2004, 299, 284–299. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistical theory of floods and droughts. J. Inst. Water Eng. 1958, 12, 157–184. [Google Scholar]
- Elsebaie, I.H. Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia. J. King Saud Univ. Eng. Sci. 2012, 24, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kim, J. A Study on Climate-Driven Flash Flood Risks in the Boise River Watershed, Idaho. Water 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Lee, J.H.; Jeong, S.; Park, S.K.; Han, K. The impacts of climate change on local hydrology and low flow frequency in the Geum River Basin, Korea. Hydrol. Process. 2011, 25, 3437–3447. [Google Scholar] [CrossRef]
- Sun, Y.; Wendi, D.; Kim, D.E.; Liong, S.-Y. Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. Geosci. Lett. 2019, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ishtiaque, A.; Mahmud, M.S.; Rafi, M.H. Encroachment of Canals of Dhaka City, Bangladesh: An Investigative Approach. Geoscape 2014, 8, 48–64. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.; Lamond, J.; Bloch, R.; Bhattacharya, N.; López, A.; Papachristodoulou, N.; Bird, A.; Proverbs, D.; Davies, J.; Barker, R. Five Feet High and Rising: Cities and Flooding in the 21st Century; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Moniruzzaman, M.; Thakur, P.K.; Kumar, P.; Ashraful Alam, M.; Garg, V.; Rousta, I.; Olafsson, H. Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface Runoff Potential for the Dhaka City and Surroundings Using Remote Sensing. Remote Sens. 2021, 13, 83. [Google Scholar] [CrossRef]
- Alam, M. The Organized Encroachment of Land Developers—Effects on Urban Flood Management in Greater Dhaka, Bangladesh. Sustain. Cities Soc. 2014, 10, 49–58. [Google Scholar] [CrossRef]
- Islam, M.S.; Shahabuddin, A.K.M.; Kamal, M.M.; Ahmed, R. Wetlands of Dhaka City: Its Past and Present Scenario. J. Life Earth Sci. 2012, 7, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Mowla, Q.A.; Islam, M.S. Natural drainage system and water logging in Dhaka: Measures to address the problems. J. Bangladesh Inst. Plan. ISSN 2013, 2075, 9363. [Google Scholar]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Leya, R.S.; Subah, Z.; Neupane, D.; Jaisankar, S.; Senadeera, M. Livelihood Diversification of Coastal Com-munities through Gendered Lens: A Case Study on Kovalam Village, Tamil Nadu, India. Plan Plus 2021, 11, 1. [Google Scholar] [CrossRef]
- Akther, H.; Ahmad, M.M. Livelihood under stress: The case of urban poor during and post-flood in Dhaka, Bangladesh. Geogr. J. 2021, 187, 186–199. [Google Scholar] [CrossRef]
- Akther, H.; Ahmad, M.M. Livelihood in the pluvial flood prone slum communities in Dhaka, Bangladesh. Prog. Disaster Sci. 2022, 14, 100227. [Google Scholar] [CrossRef]
- RAJUK. Dhaka Metropolitan Development Plan (1995–2015), Vol-II: Urban Area Plan (1995–2005). DMDP Project, Rajdhani Unnayan Kartripakkha, Dhaka. 1997. Available online: https://www.worldcat.org/title/dhaka-metropolitan-development-plan-1995-2015-strcture-plan-master-plan-and-detailed-area-plan-for-dhaka-city/oclc/645545610 (accessed on 14 March 2023).
- Islam, M.R.; Datta, N. Remote Sensing and GIS Analysis of Changing Wetlands and Drainage Network System in Mirpur Zone. In Proceedings of the 6th International Conference on Natural Sciences and Technology (ICNST’19), Chittagong, Bangladesh, 29–30 March 2019. [Google Scholar]
- Dhakal, N.; Fang, X.; Asquith, W.H.; Cleveland, T.G.; Thompson, D.B. Return Period Adjustment for Runoff Coefficients Based on Analysis in Undeveloped Texas Watersheds. J. Irrig. Drain. Eng. 2013, 139, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civil Engineering. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Simas, M.J.; Hawkings, R.H. Lag time characteristics in small watersheds in the United States. In Proceedings of the 2nd Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 28 July–1 August 2002. [Google Scholar]
- Chesnel, A.L.; Binet, R.; Wald, L. Damage Assessment on Buildings Using Very High Resolution Multimodal Images and GIS. In Proceedings of the 5th International Workshop on Remote Sensing for Disaster Management Applications, Washington DC, 10 September 2007. Available online: https://www.researchgate.net/profile/Lucien-Wald/publication/42251446_Damage_assessment_on_buildings_using_very_high_resolution_multimodal_images_and_GIS/links/00b495193c195bb48f000000/Damage-assessment-on-buildings-using-very-high-resolution-multimodal-images-and-GIS.pdf (accessed on 14 March 2023).
- Newton, I.H.; Biswas, A.; Sakib, M.M.; Zaman, S.; Sattar, N.S.; Akter, R. Development of Extreme Rainfall Based Intensity-Duration-Frequency Curves for Dhaka City in Bangladesh. Int. J. Sci. Eng. Res. 2017, 8, 1324–1328. [Google Scholar]
- Dietz, M.E.; Clausen, J.C. Storm Water Runoff and Export Changes with Development in a Traditional and Low Impact Subdivision. J. Environ. Manag. 2008, 87, 560–566. [Google Scholar] [CrossRef]
- Rabori, A.M.; Ghazavi, R. Urban Flood Estimation and Evaluation of the Performance of an Urban Drainage System in a Semi-Arid Urban Area Using SWMM. Water Environ. Res. 2018, 90, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Klocking, B.; Haberlandt, U. Impact of Land Use Changes on Water Dynamics—A Case Study in Temperate Meso and Macro Scale River Basins. Phys. Chem. Earth 2002, 27, 619–629. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subah, Z.; Bala, S.K.; Ryu, J.H. Assessing Urban Flooding Extent of the Baunia Khal Watershed in Dhaka, Bangladesh. Water 2023, 15, 1183. https://doi.org/10.3390/w15061183
Subah Z, Bala SK, Ryu JH. Assessing Urban Flooding Extent of the Baunia Khal Watershed in Dhaka, Bangladesh. Water. 2023; 15(6):1183. https://doi.org/10.3390/w15061183
Chicago/Turabian StyleSubah, Zarin, Sujit Kumar Bala, and Jae Hyeon Ryu. 2023. "Assessing Urban Flooding Extent of the Baunia Khal Watershed in Dhaka, Bangladesh" Water 15, no. 6: 1183. https://doi.org/10.3390/w15061183