# Quantification of Groundwater Vertical Flow from Temperature Profiles: Application to Agua Amarga Coastal Aquifer (SE Spain) Submitted to Artificial Recharge

^{*}

## Abstract

**:**

^{−9}and 7.5 × 10

^{−7}m/s has been found. These values decrease near the surface, where the flow is mainly horizontal.

## 1. Introduction

## 2. Study Area

## 3. Methodology

#### 3.1. Experimental Data Introduction and Processing

^{2}), whereas for a maximum irrigation value, only the area where a permanent sheet was observed is considered. Even though the irrigation pipe system surrounds the 8 ponds, not all of them were activated simultaneously, and seawater does not frequently cover the whole area.

#### 3.2. The Inverse Problem Protocol

## 4. Numerical Model

## 5. Inverse Problem Applied to Vertical Flow Analysis

## 6. Discussion

^{−7}to 7.3 × 10

^{−7}m/s by applying Bredehoeft and Papadopulos’ solution [10], and the second, using the seepage meters procedure, has an interval of 2.3 × 10

^{−9}–1.2 × 10

^{−6}m/s. Employing Bredehoeft and Papadopulos’ solution, we obtain an average of 3.5 × 10

^{−7}m/s. Other scenarios in which temperature data were used to estimate vertical velocities had similar results. Lapham [1] studied upward flow in a river–groundwater interaction scenario in two different locations in the US (Hardwick and New Braintree). The values ranged from 3.5 × 10

^{−8}m/s to 7 × 10

^{−7}m/s. According to Stallman [34], percolation rates of 2.3 × 10

^{−7}m/s can be detected with profiles resulting from diurnal temperature fluctuations. This rate can go down to 0.35 × 10

^{−7}m/s in low conductivity soils with a wide range of temperature variations and carefully taken measurements. Considering annual temperature fluctuations, detection can reach values of 0.11 × 10

^{−7}m/s.

_{bouyancy}:

_{Darcy}) of 8.6 × 10

^{−7}and 3.5 × 10

^{−8}m/s from the previous study of Alhama [32]. These values are the lowest attributed to the Pliocene–Quaternary materials in the upper aquifer, which limit the vertical flow (transversal to layers arranged horizontally). These are the standard values of μ (1 × 10

^{−3}kg m

^{−1}s

^{−1}), ρ

_{e,w}(10

^{3}kg m

^{−3}), g (9.81 m s

^{−2}), and β ([1,2] × 10

^{−4}°C

^{−1}).

## 7. Conclusions

^{−7}to 7 × 10

^{−7}m/s. The second (P-II) compared the TDPTS from a year in which the recharge was negligible (2011, scenario 5) with another in which the recharge was significant (2022, scenario 5). The results varied between 3.5 × 10

^{−8}and 7.5 × 10

^{−7}m/s. In all the scenarios, the velocity decreased near the surface (from 4.9 × 10

^{−7}m/s averaged at 12 m depth to 2.8 × 10

^{−7}m/s averaged at 3 m depth). It was negative (downward flow) at 3 m depth in scenario 6, in which intensive artificial recharge was taking place.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

${\mathrm{C}}_{\mathrm{c}}$ | capacitor |

${\mathrm{c}}_{\mathrm{e}}$ | volumetric heat capacity of the rock–fluid matrix (J m^{−3} k^{−1}) |

${\mathrm{c}}_{\mathrm{e},\mathrm{w}}$ | volumetric heat capacity of water (J m^{−3} k^{−1}) |

$\mathrm{EC}$ | electrical conductivity (mS/cm) |

$\mathrm{g}$ | gravity (m s^{−2}) |

${\mathrm{G}}_{\mathrm{cd}}$ | current generator relative to the heating circuit, placed in the lower half of the cell, parallel to the lower resistance |

${\mathrm{G}}_{\mathrm{cu}}$ | current generator relative to the heating circuit, placed in the upper half of the cell, parallel to the upper resistance |

$\mathrm{H}$ | vertical depth of the aquifer (m) |

J_{C} | current intensity flowing through a capacitor (A) |

$\mathrm{k}$ | permeability (m^{2}) |

${\mathrm{k}}_{\mathrm{m}}$ | heat conductivity of the rock–fluid matrix (J/(s m °C)) |

${\mathrm{K}}_{\mathrm{Darcy}}$ | hydraulic conductivity (m s^{−1}) |

$\mathrm{MCT}$ | Mancomunidad de los Canales del Taibilla |

${\mathrm{R}}_{\mathrm{cd}}$ | resistor placed in the lower half of the cell, relative to heat flow |

${\mathrm{R}}_{\mathrm{cu}}$ | resistor placed in the upper half of the cell, relative to heat flow |

$\mathrm{T}$ | temperature (°C) |

${\mathrm{T}}_{\mathrm{z}}$ | temperature at depth z (°C) |

${\mathrm{T}}_{\mathrm{z}\text{}\mathrm{simulated}}$ | temperature simulated at depth z (°C) |

${\mathrm{T}}_{\mathrm{bottom}}$ | temperature at the bottom of the domain (°C) |

$\mathrm{TDPTS}$ | temperature–depth profile time series |

TI | thermal inertia |

${\mathrm{T}}_{\mathrm{ini}}$ | initial temperature (°C) |

${\mathrm{T}}_{\mathrm{surface}}$ | mean surface soil temperature (°C) |

$\mathrm{t}$ | time (s) |

$\mathrm{V}$ | voltage (V) |

${\mathrm{v}}_{\mathrm{advection}}$ | advective component of velocity (m s^{−1}) |

${\mathrm{v}}_{\mathrm{bouyancy}}$ | velocity caused by buoyancy effects (m s^{−1}) |

${\mathrm{v}}_{\mathrm{z}}$ | vertical water flow velocity (m s^{−1}) |

${\mathrm{v}}_{\mathrm{z},\mathrm{upward}\text{}\mathrm{flow}}$ | vertical upward water flow velocity component (m s^{−1}) |

${\mathrm{v}}_{\mathrm{z},\mathrm{recharge}\text{}\mathrm{flwo}}$ | vertical downward water flow velocity component (m s^{−1}) |

${\mathrm{v}}_{\mathrm{z},\mathrm{o},\mathrm{i}}$ | inverse problem protocol velocity “i” |

${\mathrm{v}}_{\mathrm{z},\mathrm{o},1}$ | inverse problem protocol initial velocity |

$\mathrm{z}$ | vertical spatial coordinate (m) |

$\mathsf{\alpha}$ | thermal diffusivity (m^{2} s^{−1}) |

$\mathsf{\beta}$ | thermal expansion coefficient of water (°C^{−1}) |

$\Delta $ | gradient operator |

$\Delta $T | amplitude due to sinusoidal boundary condition at the surface (°C) |

$\Delta {\mathrm{T}}_{\mathrm{interval}}$ | temperature gradient for each depth interval (°C) |

${\left(\Delta \mathrm{T}\right)}_{\mathrm{z}=0}$ | amplitude of the temperature variation at $\mathrm{z}=0$ (°C) |

$\Delta {\mathrm{v}}_{\mathrm{z}}$ | groundwater velocity increase (ms^{−1}) |

$\mathsf{\mu}$ | water viscosity (kg m^{−1} s^{−1}) |

${\mathsf{\rho}}_{\mathrm{e}}$ | wet bulk density of the rock–fluid matrix (kg m^{−3}) |

${\mathsf{\rho}}_{\mathrm{e},\mathrm{w}}$ | water density (kg m^{−3}) |

$\mathsf{\tau}$ | period of the sinusoidal thermal wave (s) |

$\mathsf{\phi}$ | mathematical function |

## References

- Lapham, W.W. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity; Paper 2337; U.S. Geological Survey Water-Supply: Reston, VA, USA, 1989.
- Reiter, M. Using precision temperature logs to estimate horizontal and vertical groundwater flow components. Water Resour. Res.
**2001**, 37, 663–674. [Google Scholar] [CrossRef] - Ferguson, G.; Woodbury, A.D. The effects of climatic variability on estimates of recharge from temperature profiles. Groundwater
**2008**, 43, 837–842. [Google Scholar] [CrossRef] - Duque, C.; Calvache, M.L.; Engesgaard, P. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer). J. Hydrol.
**2010**, 381, 121–133. [Google Scholar] [CrossRef] - Tirado-Conde, J.; Engesgaard, P.; Karan, S.; Müller, S.; Duque, C. Evaluation of temperature profiling and seepage meter methods for quantifying submarine groundwater discharge to coastal lagoons: Impacts of saltwater intrusion and the associated thermal regime. Water
**2019**, 11, 1648. [Google Scholar] [CrossRef] [Green Version] - Blanco-Coronas, A.M.; Calvache, M.L.; López-Chicano, M.; Martín-Montañés, C.; Jiménez-Sánchez, J.; Duque, C. Salinity and Temperature Variations near the Freshwater-Saltwater Interface in Coastal Aquifers Induced by Ocean Tides and Changes in Recharge. Water
**2022**, 14, 2807. [Google Scholar] [CrossRef] - Fahs, M.; Graf, T.; Tran, T.V.; Ataie-Ashtiani, B.; Simmons, C.T.; Younes, A. Study of the effect of thermal dispersion on internal natural convection in porous media using Fourier series. Transp. Porous Media
**2020**, 131, 537–568. [Google Scholar] [CrossRef] - Bejan, A. Convection Heat Transfer, 4th ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Suzuki, S. Percolation measurements based on heat flow through soil with special reference to paddy fields. J. Geophys. Res.
**1960**, 65, 2883–2885. [Google Scholar] [CrossRef] - Bredehoeft, J.D.; Papadopulos, I.S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour. Res.
**1965**, 1, 325–328. [Google Scholar] [CrossRef] - Cartwright, K. Tracing shallow groundwater systems by soil temperatures. Water Resour. Res.
**1974**, 10, 847–855. [Google Scholar] [CrossRef] - Taniguchi, M.; Sharma, M.L. Determination of groundwater recharge using the change in soil temperature. J. Hydrol.
**1993**, 148, 219–229. [Google Scholar] [CrossRef] - Tabbagh, A.; Bendjoudi, H.; Benderitter, Y. Determination of recharge in unsaturated soils using temperature monitoring. Water Resour. Res.
**1999**, 35, 2439–2446. [Google Scholar] [CrossRef] - Kulongoski, J.T.; Izbicki, J.A. Simulation of fluid, heat transport to estimate desert stream infiltration. Groundwater
**2008**, 46, 462–474. [Google Scholar] [CrossRef] [PubMed] - Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol.
**1993**, 146, 131–148. [Google Scholar] [CrossRef] - Malcolm, I.A.; Soulsby, C.; Youngson, A.F.; Hannah, D.; McLaren, I.S.; Thorne, A. Influence of flow extremes on the hyporheic zone of salmon spawning streams, Water Extremes and Water Stress: Science, Policy and Practice. In Proceedings of the British Hydrological Society 8th National Symposium, Birmingham, UK, 8–11 September 2002. [Google Scholar]
- Calvache, M.L.; Duque, C.; Fontalva, J.M.; Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol.
**2011**, 8, 223–236. [Google Scholar] [CrossRef] [Green Version] - Cartwright, K. Redistribution of geothermal heat by a shallow aquifer. Geol. Soc. Am. Bull.
**1971**, 82, 3197–3200. [Google Scholar] [CrossRef] - Birman, J.H. Geothermal exploration for ground water. Geol. Soc. Am. Bull.
**1969**, 80, 617–630. [Google Scholar] [CrossRef] - Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res.
**2008**, 44. [Google Scholar] [CrossRef] - Duque, C.; Müller, S.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: The role of thermal conductivity. Hydrol. Process.
**2016**, 30, 383–395. [Google Scholar] [CrossRef] - Woodbury, A.D.; Smith, L. On the thermal effects of three-dimensional groundwater flow. J. Geophys. Res. Solid Earth
**1985**, 90, 759–767. [Google Scholar] [CrossRef] - Lautz, L.K. Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records. J. Hydrol.
**2012**, 464, 199–215. [Google Scholar] [CrossRef] - Alhama Manteca, I.; Alhama, F.; Rodríguez-Estrella, T. Chemical and physical parameters as trace markers of anthropogenic-induced salinity in the Agua Amarga coastal aquifer (southern Spain). Hydrogeol. J.
**2012**, 20, 1315–1329. [Google Scholar] [CrossRef] - Alhama, I.; García-Ros, G.; González-Alcaraz, M.N.; Álvarez-Rogel, J. Long-term artificial seawater irrigation as a sustainable environmental management strategy for abandoned solar salt works: The case study of Agua Amarga salt marsh (SE Spain). CATENA
**2022**, 217, 106429. [Google Scholar] [CrossRef] - Box Amorós, M. Las Zonas Húmedas de la Provincia de Alicante y los Procesos de Intervención Antrópica. Ph.D. Thesis, Universitat d’Alacant-Universidad de Alicante, Alicante, Spain, 1985. [Google Scholar]
- González-Alcaraz, M.N.; Aránega, B.; Tercero, M.C.; Conesa, H.M.; Álvarez-Rogel, J. Irrigation with seawater as a strategy for the environmental management of abandoned solar saltworks: A case-study in SE Spain based on soil–vegetation relationships. Ecol. Eng.
**2014**, 71, 677–689. [Google Scholar] [CrossRef] - Rodríguez-Estrella, T.; Pulido-Bosch, A. Methodologies for abstraction from coastal aquifers for supplying desalination plants in the south-east of Spain. Desalination
**2009**, 249, 1088–1098. [Google Scholar] [CrossRef] - Alhama, I. Environmental and hydrogeological relations between the Mediterranean Sea and the Agua Amarga salt marsh and aquifer (Alicante province): Effect of desalination plants and corrective measures. In Effect of Desalination Plants and Corrective Measures; UPCT: Cartagena, Spain, 2011. [Google Scholar]
- Navarro, R.; Sanchez Lizaso, J.L. Mitigation cost of desalination intake impact on coastal wetlands. Desalin. Water Treat
**2021**, 224, 136–143. [Google Scholar] [CrossRef] - Manteca, I.A.; Estrella, T.R.; Alhama, F. Hydric restoration of the Agua Amarga Salt Marsh (SE Spain) affected by abstraction from the underlying coastal aquifer. Water Resour. Manag.
**2012**, 26, 1763–1777. [Google Scholar] [CrossRef] - Alhama Manteca, I. Simulation and consequences of successive anthropogenic activity in the Agua Amarga coastal aquifer (southeast Spain). Hydrol. Sci. J.
**2013**, 58, 1072–1087. [Google Scholar] [CrossRef] [Green Version] - Tutiempo.net. Available online: https://www.tutiempo.net/clima/2013/ws-83600.html (accessed on 26 December 2022).
- Stallman, R.W. Computation of ground-water velocity from temperature data. USGS Water Supply Pap.
**1963**, 1544, 36–46. [Google Scholar] - Bedekar, V.; Morway, E.D.; Langevin, C.D.; Tonkin, M.J. MT3D-USGS Version 1: A US Geological Survey Release of MT3DMS Updated with New and Expanded Transport Capabilities for Use With MODFLOW (No. 6-A53); US Geological Survey: Reston, VA, USA, 2016.
- Beegum, S.; Vanderborght, J.; Šimůnek, J.; Herbst, M.; Sudheer, K.P.; Nambi, I.M. Investigating atrazine concentrations in the Zwischenscholle aquifer using MODFLOW with the HYDRUS-1D package and MT3DMS. Water
**2020**, 12, 1019. [Google Scholar] [CrossRef] [Green Version] - Healy, R.W.; Ronan, A.D. Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media—Modification of the US Geological Survey’s computer program VS2DT. Water-Resour. Investig. Rep.
**1996**, 96, 4230. [Google Scholar] - Owen, S.J.; Jones, N.L.; Holland, J.P. A comprehensive modeling environment for the simulation of groundwater flow and transport. Eng. Comput.
**1996**, 12, 235–242. [Google Scholar] [CrossRef] - Aghlmand, R.; Abbasi, A. Application of MODFLOW with boundary conditions analyses based on limited available observations: A case study of Birjand plain in East Iran. Water
**2019**, 11, 1904. [Google Scholar] [CrossRef] [Green Version] - Horno, J. Network Simulation Method; Research Signpost: Trivandrum, India, 2002. [Google Scholar]
- Jiménez-Valera, J.A.; Alhama, F. Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers. Mathematics
**2022**, 10, 2717. [Google Scholar] [CrossRef] - Cánovas, M.; Alhama, I.; García, G.; Trigueros, E.; Alhama, F. Numerical simulation of density-driven flow and heat transport processes in porous media using the network method. Energies
**2017**, 10, 1359. [Google Scholar] [CrossRef] [Green Version] - Cánovas, M.; Alhama, I.; Trigueros, E.; Alhama, F. A review of classical dimensionless numbers for the Yusa problem based on discriminated non-dimensionalization of the governing equations. Hydrol. Process.
**2016**, 30, 4101–4112. [Google Scholar] [CrossRef] - Manteca, I.A.; Alcaraz, M.; Trigueros, E.; Alhama, F. Dimensionless characterization of salt intrusion benchmark scenarios in anisotropic media. Appl. Math. Comput.
**2014**, 247, 1173–1182. [Google Scholar] [CrossRef] - Ngspice. Open Source Mixed Mode, Mixed Level Circuit Simulator (Based on Berkeley’s Spice3f5). 2016. Available online: http://ngspice.sourceforge.net/ (accessed on 1 December 2022).
- PSPICE. Version 6.0: Microsim Corporation. 20 Fairbanks, Irvine, California 92718. 1994. Available online: https://www.pspice.com (accessed on 1 December 2022).

**Figure 1.**The Agua Amarga salt marsh and the seawater irrigation area. Geographic coordinates are in the corner (Base image from Google Earth [California, USA], Landsat Copernicus [USA], and Maxar Technologies [Colorado, USA]).

**Figure 5.**Total volume of seawater used for irrigation in July (

**left**) and August (

**right**) for the period 2010–2022.

**Figure 6.**TDPTS averaged for years with and without recharge (2010–2015 and 2016–2022, respectively) in the months of July (

**left**) and August (

**right**).

**Figure 7.**TDPTS for piezometer P-8 in 2011 (no artificial recharge,

**left**) and 2020 (intensive artificial recharge,

**right**).

**Figure 9.**Influence of velocity on function variations (Ψ) for each scenario at the selected depths.

Scenario | Time Interval | ${\mathbf{k}}_{\mathbf{m}}$ (cal °C ^{−1} s^{−1} m^{−1}) | ${\mathsf{\rho}}_{\mathbf{e}}{\mathbf{c}}_{\mathbf{e}}$ (cal °C ^{−1} m^{−3}) | ${\mathbf{T}}_{\mathbf{surface}}$ (°C) | ${\mathbf{T}}_{\mathbf{bottom}}$ (°C) |
---|---|---|---|---|---|

1 | July 2010–2015 | 0.45 | 0.75 × 10^{−6} | Average air temperature 2010–2015: 26.5 | Average temperature at 16 m depth in the piezometer 2010–2015: 20.5 |

2 | July 2016–2022 | 0.45 | 0.75 × 10^{−6} | Average seawater temperature 2016–2022: 26.8 | Average temperature at 16 m depth in the piezometer 2016–2022: 20.5 |

3 | August 2010–2015 | 0.45 | 0.75 × 10^{−6} | Average air temperature 2010–2015: 27.1 | Average temperature at 16 m depth in the piezometer 2010–2015: 20.6 |

4 | August 2016–2022 | 0.45 | 0.75 × 10^{−6} | Average seawater temperature 2016–2022: 27.3 | Average temperature at 16 m depth in the piezometer 2016–2022: 20.5 |

Scenario | Time Interval | ${\mathbf{k}}_{\mathbf{m}}$ (cal °C ^{−1} s^{−1} m^{−1}) | ${\mathsf{\rho}}_{\mathbf{e}}{\mathbf{c}}_{\mathbf{e}}$ (cal °C ^{−1} m^{−3}) | ${\mathbf{T}}_{\mathbf{surface}}$ (°C) | ${\mathbf{T}}_{\mathbf{bottom}}$ (°C) |
---|---|---|---|---|---|

5 | 2011 | 0.45 | 0.75 × 10^{−6} | Sinusoidal function based on monthly air temperature 2011 | Constant value calculated from mean temperature at 16 m depth 2011: 20.6 |

6 | 2020 | 0.45 | 0.75 × 10^{−6} | Sinusoidal function based on monthly air temperature 2020 | Constant value calculated from mean temperature at 16 m depth 2020: 20.3 |

**Table 3.**Selected velocities for every depth according to the protocol in P-I. The symbol [*] refers to the results of limited reliability.

Scenario | Velocity at 3 m Depth (m/s) | Velocity at 6 m Depth (m/s) | Velocity at 9 m Depth (m/s) | Velocity at 12 m Depth (m/s) |
---|---|---|---|---|

1 | 7 × 10^{−7} | 7 × 10^{−7} | 7 × 10^{−7} | 7 × 10^{−7} |

2 | 3 × 10^{−8} * | 4 × 10^{−7} | 4 × 10^{−7} | 4 × 10^{−7} |

3 | 2 × 10^{−7} | 4 × 10^{−7} | 4 × 10^{−7} | 4 × 10^{−7} |

4 | 2 × 10^{−9} * | 1 × 10^{−7} | 2 × 10^{−7} | 2 × 10^{−7} |

**Table 4.**Selected velocities for every depth according to the protocol in P-II for scenarios 5 (2011) and 6 (2020). The symbol [*] refers to results of limited reliability.

Month (Year) | Velocity at 3 m Depth (m/s) | Velocity at 6 m Depth (m/s) | Velocity at 9 m Depth (m/s) | Velocity at 12 m Depth (m/s) |
---|---|---|---|---|

January (2011) | 4.0 × 10^{−7} | 6.0 × 10^{−7} | 6.0 × 10^{−7} | 6.0 × 10^{−7} |

February (2011) | 1.5 × 10^{−7} | 7.5 × 10^{−7} | 7.5 × 10^{−7} | 7.5 × 10^{−7} |

March (2011) | 1.0 × 10^{−7} | 2.5 × 10^{−7} | 5.0 × 10^{−7} | 5.0 × 10^{−7} |

August (2011) | 2.5 × 10^{−7} | 7.5 × 10^{−7} | 7.5 × 10^{−7} | 7.5 × 10^{−7} |

September (2011) | 0.0 * | 7.0 × 10^{−7} | 7.0 × 10^{−7} | 7.0 × 10^{−7} |

October (2011) | 0.0 * | 7.0 × 10^{−7} | 7.0 × 10^{−7} | 7.0 × 10^{−7} |

November (2011) | 1.0 × 10^{−8} * | 2.0 × 10^{−7} | 5.0 × 10^{−7} | 5.0 × 10^{−7} |

January (2020) | 4.0 × 10^{−7} | 5.0 × 10^{−7} | 5.0 × 10^{−7} | 5.0 × 10^{−7} |

February (2020) | 1.5 × 10^{−7} | 7.0 × 10^{−7} | 7.0 × 10^{−7} | 7.0 × 10^{−7} |

March (2020) | 1.5 × 10^{−7} | 1.5 × 10^{−7} | 1.5 × 10^{−7} | 3.5 × 10^{−7} |

June (2020) | 5.0 × 10^{−8} * | 6.0 × 10^{−7} | 6.0 × 10^{−7} | 6.0 × 10^{−7} |

July (2020) | −3.0 × 10^{−8} * | 7.0 × 10^{−7} | 7.0 × 10^{−7} | 7.0 × 10^{−7} |

August (2020) | −2.0 × 10^{−7} | 8.0 × 10^{−8} | 2.0 × 10^{−7} | 2.0 × 10^{−7} |

September (2020) | 4.0 × 10^{−9} * | 8.0 × 10^{−8} | 1.5 × 10^{−7} | 4.0 × 10^{−7} |

October (2020) | 4.5 × 10^{−8} * | 8.0 × 10^{−8} | 1.0 × 10^{−7} | 4.0 × 10^{−7} |

November (2020) | 3.5 × 10^{−8} * | 3.5 × 10^{−8} | 6.0 × 10^{−8} | 1.0 × 10^{−7} |

V_{z,1} (m/s) | V_{z,2} (m/s) | Transient Time (days) |
---|---|---|

0.0 × 10^{−7} | 7.00 × 10^{−7} | 111 |

1.00 × 10^{−7} | 7.00 × 10^{−7} | 104 |

2.00 × 10^{−7} | 7.00 × 10^{−7} | 82 |

4.00 × 10^{−7} | 7.00 × 10^{−7} | 65 |

Depth Interval (m) | ΔT_{interval} (°C) | v_{advection} P1 (m/s) | v_{advection} P2(m/s) | v_{bouyancy}(m/s) |
---|---|---|---|---|

0–4.5 | 5.75 | [2 × 10^{−9}–7 × 10^{−7}] | [0–4 × 10^{−7}] | 9.79 × 10^{−9} |

4.5–7.5 | 2.25 | [1 × 10^{−7}–7 × 10^{−7}] | [3.5 × 10^{−8}–7.5 × 10^{−7}] | 3.83 × 10^{−9} |

7.5–10.5 | 1.05 | [2 × 10^{−7}–7 × 10^{−7}] | [6 × 10^{−8}–7.5 × 10^{−7}] | 1.79 × 10^{−9} |

10.5–16 | 0.35 | [2 × 10^{−7}–7 × 10^{−7}] | [1 × 10^{−7}–7.5 × 10^{−7}] | 5.96 × 10^{−10} |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiménez-Valera, J.A.; Alhama, I.; Trigueros, E.
Quantification of Groundwater Vertical Flow from Temperature Profiles: Application to Agua Amarga Coastal Aquifer (SE Spain) Submitted to Artificial Recharge. *Water* **2023**, *15*, 1093.
https://doi.org/10.3390/w15061093

**AMA Style**

Jiménez-Valera JA, Alhama I, Trigueros E.
Quantification of Groundwater Vertical Flow from Temperature Profiles: Application to Agua Amarga Coastal Aquifer (SE Spain) Submitted to Artificial Recharge. *Water*. 2023; 15(6):1093.
https://doi.org/10.3390/w15061093

**Chicago/Turabian Style**

Jiménez-Valera, José Antonio, Iván Alhama, and Emilio Trigueros.
2023. "Quantification of Groundwater Vertical Flow from Temperature Profiles: Application to Agua Amarga Coastal Aquifer (SE Spain) Submitted to Artificial Recharge" *Water* 15, no. 6: 1093.
https://doi.org/10.3390/w15061093