Research on Liquid Flow Measurement Method Based on Heat Transfer Method
Abstract
:1. Introduction
2. Study on Measuring Mechanism of Thermal Flowmeter
2.1. Mechanical Structure Design of Flowmeter
2.2. Constant Voltage Heating
2.3. Constant Current Heating
2.4. Constant Power Heating
3. Discussion on Power Factor of Constant Current Heating
4. Experimental Analysis and Discussion
4.1. Introduction to Experimental Environment
4.2. Analysis of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canpolat, C.; Sahin, B. Influence of single rectangular groove on the flow past a circular cylinder. Int. J. Heat Fluid Flow 2017, 64, 79–88. [Google Scholar] [CrossRef]
- Darvishyadegari, M.; Hassanzadeh, R. Convective heat transfer and fluid flow of two counter-rotating cylinders in tandem arrangement. Acta Mech. 2017, 229, 1783–1802. [Google Scholar] [CrossRef]
- Dipankar, A.; Sengupta, T.K.; Talla, S.B. Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. J. Fluid Mech. 2017, 573, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C. The measurement of gases. J. Frankl. Inst. 1911, 172, 411–460. [Google Scholar] [CrossRef]
- Hussain, S.H.; Hussein, A.K. Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations. Int. Commun. Heat Mass Transf. 2011, 38, 263–274. [Google Scholar] [CrossRef]
- Belyaev, M.M.; Popov, A.I. Measurement of the Component-by-Component Flow Rate of a Gas-Liquid Medium by the Thermal Method. Meas. Tech. 2021, 63, 816–822. [Google Scholar] [CrossRef]
- Cascetta, F.; Rotondo, G.; Piccato, A.; Spazzini, P.G. Calibration procedures and uncertainty analysis for a thermal mass gas flowmeter of a new generation. Measurement 2016, 89, 280–287. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, Y.; Deng, B.; Yin, H.; Lu, Z.; Xiang, Y.; Shi, J.; Zeng, Z.; Wu, Y. Optimized design of the restrictor for a MEMS thermal gas flowmeter. Meas. Sci. Technol. 2022, 33, 105901. [Google Scholar] [CrossRef]
- Shafipour, M.; Safavinejad, A.; Abbas Zadeh, M. Inverse estimation of boundary conditions with forced convection heat transfer in two dimensional channels. Heat Mass Transf. 2018, 55, 1927–1935. [Google Scholar] [CrossRef]
- Joucaviel, M.; Gosselin, L.; Bello-Ochende, T. Maximum heat transfer density with rotating cylinders aligned in cross-flow. Int. Commun. Heat Mass Transf. 2008, 35, 557–564. [Google Scholar] [CrossRef]
- Paramane, S.B.; Sharma, A. Heat and fluid flow across a rotating cylinder dissipating uniform heat flux in 2D laminar flow regime. Int. J. Heat Mass Transf. 2010, 53, 4672–4683. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Rubeis, T.D. Preliminary analysis of the influence of environmental boundary conditions on convective heat transfer coefficients. J. Phys. Conf. Ser. 2021, 1868, 012024-31. [Google Scholar] [CrossRef]
- Lazaro, R.; Frizera-Neto, A.; Marques, C.; Castellani CE, S.; Leal-Junior, A. FBG-Based Sensor for the Assessment of Heat Transfer Rate of Liquids in a Forced Convective Environment. Sensors 2021, 21, 6922. [Google Scholar] [CrossRef] [PubMed]
- Tegenaw, P.D.; Mawire, A.; Verboven, P.; Vanierschot, M. Determination of Forced Convective Heat Transfer Coefficients on an Array of Disks. Heat Transf. Eng. 2021, 43, 1438–1450. [Google Scholar] [CrossRef]
- Huijsing, J.H.; van Dorp, A.L.C.; Loos, P.J.G. Thermal mass-flow meter. J. Phys. E Sci. Instrum. 1988, 21, 994–997. [Google Scholar] [CrossRef]
- Liu, D.; Liu, L.; Bai, D.; Diao, Y. Experimental study of loss coefficients for laminar oil-water two-phase flow through micro-scale flow restrictions. Exp. Therm. Fluid Sci. 2023, 140, 747–759. [Google Scholar] [CrossRef]
- Jeong, U.; Kim, Y.H.; Kim, J.-M.; Kim, T.-J.; Kim, S.J. Experimental evaluation of permanent magnet probe flowmeter measuring high temperature liquid sodium flow in the ITSL. Nucl. Eng. Des. 2013, 265, 566–575. [Google Scholar] [CrossRef]
- Engel, R.; Baade, H.-J. Water density determination in high-accuracy flowmeter calibration-Measurement uncertainties and practical aspects. Flow Meas. Instrum. 2012, 25, 40–53. [Google Scholar] [CrossRef]
- Doh, I.; Sim, D.; Kim, S.S. Microfluidic Thermal Flowmeters for Drug Injection Monitoring. Sensors 2022, 22, 3151. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Niu, P.; Liu, M.; Zhang, C. Measurement of vertical gas-liquid two-phase flow by electromagnetic flowmeter and image processing based on the phase-isolation. Exp. Therm. Fluid Sci. 2019, 101, 87–100. [Google Scholar] [CrossRef]
- Rupnik, K.; Bajsić, I.; Kutin, J. Modelling of a thermal dispersion mass flow meter. Flow Meas. Instrum. 2018, 59, 37–44. [Google Scholar] [CrossRef]
- Bekraoui, A.; Hadjadj, A. Thermal flow sensor used for thermal mass flowmeter. Microelectron. J. 2020, 103, 871–877. [Google Scholar] [CrossRef]
- Bekraoui, A.; Hadjadj, A.; Benmounah, A.; Oulhadj, M. Uncertainty study of fiscal orifice meter used in a gas Algerian field. Flow Meas. Instrum. 2019, 66, 200–208. [Google Scholar] [CrossRef]
- Yu, Y.M.; He, Z.H.; Roesler, H.; Solano, C.; Zhang, Z. Design and application of thermal mass flow meter in space. Nucl. Inst. Methods Phys. Res. A 2020, 950, 83178–83187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Dang, R.; Dang, B. Research on Liquid Flow Measurement Method Based on Heat Transfer Method. Water 2023, 15, 1052. https://doi.org/10.3390/w15061052
Qin H, Dang R, Dang B. Research on Liquid Flow Measurement Method Based on Heat Transfer Method. Water. 2023; 15(6):1052. https://doi.org/10.3390/w15061052
Chicago/Turabian StyleQin, Hongwei, Ruirong Dang, and Bo Dang. 2023. "Research on Liquid Flow Measurement Method Based on Heat Transfer Method" Water 15, no. 6: 1052. https://doi.org/10.3390/w15061052