Two-Dimensional Modelling for Dam Break Analysis and Flood Hazard Mapping: A Case Study of Papadia Dam, Northern Greece
Abstract
:1. Introduction
2. Study Area—Dam Characteristics
3. Model Elaboration
3.1. Digital Data
3.2. Breach Parameters
3.3. Model Boundary Conditions
3.4. Probable Maximum Flood (PMF)
3.5. Flood Routing
3.6. Flood Mapping
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amini, A.; Bahrami, J.; Miraki, A. Effects of dam break on downstream dam and lands using GIS and Hec Ras: A decision basis for the safe operation of two successive dams. Int. J. River Basin Manag. 2021, 20, 487–498. [Google Scholar] [CrossRef]
- Greek Committee on Large Dams. Large dams of Greece. Athens 2013, Copyright by Greek Committee on Large Dams. Available online: https://eemf.gr/Fragmata_Elladas_201311.pdf (accessed on 5 December 2022).
- Maddamsetty, R.; Praveen, T.V.; Rao, S.S.; Manjulavani, K. Tehri Dam-breach versus monsoon flood routing in the Ganga River system. ISH J. Hydraul. Eng. 2010, 16, 109–131. [Google Scholar] [CrossRef]
- Tsakiris, G. Flood risk assessment: Concepts, modelling, applications. NHESS 2014, 14, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. HESS 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Kreibich, H.; Di Baldassarre, G.; Vorogushyn, S.; Aerts, J.C.; Apel, H.; Aronica, G.T.; Arnbjerg-nielsen, K.; Bouwer, L.M.; Bubeck, P.; Caloiero, T.; et al. Earth’s Future Special Section: Adaptation to flood risk: Results of international paired flood event studies. Earth’s Future 2017, 5, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Lin, T.W.; Chen, C.Y. Modeling of natural dam failure modes and downstream riverbed morphological changes with different dam materials in a flume test. Eng. Geol. 2015, 188, 148–158. [Google Scholar] [CrossRef]
- Derdous, O.; Djemili, L.; Bouchened, H.; Tachi, S.E. A GIS based approach for the prediction of the dam break flood hazard—A case study of Zardezas reservoir “Skikda, Algeria”. J. Water Land Dev. 2015, 27, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, M.; Witt, A.; Stewart, K.; Hadjerioua, B.; Mobley, M. The Economic Benefits of Multipurpose Reservoirs in the United States-Federal Hydropower Fleet; National Technical Information Service: Springfield, VA, USA, 2015. [Google Scholar]
- Kumar, S.; Jaswal, A.; Pandey, A.; Sharma, N. Literature review of dam break studies and inundation mapping using hydraulic models and GIS. Int. Res. J. Eng. Technol. 2017, 4, 55–61. [Google Scholar]
- Zhang, L.; Peng, M.; Chang, D.; Xu, Y. Dam breach modeling. In Dam Failure Mechanisms and Risk Assessment; John Wiley & Sons: Singapore, 2016; pp. 161–221. [Google Scholar] [CrossRef]
- Cao, Z.; Huang, W.; Pender, G.; Liu, X. Even more destructive: Cascade dam break floods. J. Flood Risk Manag. 2014, 7, 357–373. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, V.K.; Kopsiaftis, G.; Tsakiris, G. Propagating dam breach parametric uncertainty in a river reach using the HEC-RAS software. Hydrology 2020, 7, 72. [Google Scholar] [CrossRef]
- Centre for Research on the Epidemiology of Disasters (CRED). Summarized Table of Natural Disasters in Greece from 1900 to 2017, EM-DAT: The CRED/OFDA International Disaster Database–www.emdat.be–Université Catholique de Louvain–Brussels–Belgium. Available online: http://www.emdat.be (accessed on 12 January 2018).
- You, L.; Li, C.; Min, X.; Xiaolei, T. Review of dam-break research of earth-rock dam combining with dam safety management. Procedia Eng. 2012, 28, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Karim, I.R.; Hassan, Z.F.; Abdullah, H.H.; Alwan, I.A. 2D-HEC-RAS modeling of flood wave propagation in a Semi-Arid Area due to dam overtopping failure. Civ. Eng. J. 2021, 7, 1501–1514. [Google Scholar] [CrossRef]
- Zhang, L.M.; Xu, Y.; Jia, J.S. Analysis of earth dam failures: A database approach. Georisk 2009, 3, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, D.C. Peak outflow from breached embankment dam. J. Water Resour. Plan. Manag. 1995, 121, 90–97. [Google Scholar] [CrossRef]
- Yi, X. A Dam Break Analysis Using HEC-RAS. JWARP 2011, 3, 370–379. [Google Scholar]
- Clausen, L.K. Potential Dam Failure: Estimation of Consequences, and Implications for Planning. Master’s Thesis, School of Geography and Planning, Middlesex Polytechnic Collaborating with Binnie and Partners, Redhill, UK, 1989. [Google Scholar]
- Pistrika, A.K.; Jonkman, S.N. Damage to residential buildings due to flooding of New Orleans after hurricane Katrina. Nat. Hazards 2010, 54, 413–434. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Penning-Rowsell, E. Human instability in flood flows. JAWRA 2008, 44, 1208–1218. [Google Scholar]
- Australian Emergency Management Institute (AEMI). Technical Flood Risk Management Guideline: Flood Hazard; AEMI: Canberra, Australia, 2014. [Google Scholar]
- El-Naqa, A.; Jaber, M. Floodplain analysis using ArcGIS, HEC-GeoRAS and HEC-RAS in Attarat Um Al-Ghudran oil shale concession area, Jordan. J. Civil Enviro. Eng. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Shahrim, M.F.; Ros, F.C. Estimation of breach outflow hydrograph using selected regression breach equations. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012129. [Google Scholar] [CrossRef]
- Balaji, B.; Kumar, S. Dam breach analysis of Kalyani Dam using HEC-RAS. Int. J. Civ. Eng. IJCIET 2018, 9, 372–380. [Google Scholar]
- Psomiadis, E.; Tomanis, L.; Kavvadias, A.; Soulis, K.X.; Charizopoulos, N.; Michas, S. Potential dam breach analysis and flood wave risk assessment using HEC-RAS and remote sensing data: A multicriteria approach. Water 2021, 13, 364. [Google Scholar] [CrossRef]
- Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania). Water 2021, 13, 57. [Google Scholar] [CrossRef]
- Bharath, A.; Shivapur, A.V.; Hiremath, C.G. Dam break flood routing and inundation mapping using HEC-RAS and HEC-GeoRAS. In Water Resources Management and Reservoir Operation; Springer: Cham, Switzerland, 2021; pp. 129–137. [Google Scholar]
- Iroume, J.Y.A.; Onguéné, R.; Djanna Koffi, F.; Colmet-Daage, A.; Stieglitz, T.; Essoh Sone, W.; Etame, J. The 21st August 2020 Flood in Douala (Cameroon): A Major Urban Flood Investigated with 2D HEC-RAS Modeling. Water 2022, 14, 1768. [Google Scholar] [CrossRef]
- Brunner, G. Using HEC-RAS for Dam Break Studies; TD-39, Us Army Corps Eng. Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Bharath, A.; Shivapur, A.V.; Hiremath, C.G.; Maddamsetty, R. Dam break analysis using HEC-RAS and HEC-GeoRAS: A case study of Hidkal dam, Karnataka state, India. Environ. Chall. 2021, 5, 100401. [Google Scholar] [CrossRef]
- Kazakis, N.T.; Voudouris, K.S. Hydrometeorological and Hydrogeological Data of Florina Basin, Florina Prefecture, Western Macedonia Region, Greece. Technical Report, Interreg III B, WATER-MAP. 2008. Available online: http://www.kepekozani.gr/program/arc/a.pdf#page=22 (accessed on 5 December 2022).
- Koukouzas, N.; Tasianas, A.; Gemeni, V.; Alexopoulos, D.; Vasilatos, C. Geological modelling for investigating CO2 emissions in Florina Basin, Greece. Open Geosci. 2015, 7. [Google Scholar] [CrossRef]
- Srinivas, K.; Werner, M.; Wright, N. Comparing forecast skill of inundation models of differing complexity: The case of Upton upon Severn. In Flood Risk Management: Research and Practice; CRC Press: Boca Raton, FL, USA, 2008; p. 25. [Google Scholar]
- Yakti, B.P.; Adityawan, M.B.; Farid, M.; Suryadi, Y.; Nugroho, J.; Hadihardaja, I.K. 2D modeling of flood propagation due to the failure of way Ela natural dam. In MATEC Web of Conferences (SIBE 2017); EDP Sciences: Les Ulis, France, 2018; Volume 147, p. 03009. [Google Scholar] [CrossRef] [Green Version]
- Brunner, G. HEC-RAS River Analysis System, 2D Modelling User’s Manual, Version 5.0.7; Us Army Corps Eng. Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood inundation mapping sensitivity to riverine spatial resolution and modeling approach. Nat. Hazards 2016, 83, 117–132. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S.J.E.M. Flood inundation modeling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Froehlich, D.C. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- MacDonald, T.C.; Langridge-Monopolis, J. Breaching characteristics of dam failures. J. Hydraul. Eng. 1984, 110, 567–586. [Google Scholar] [CrossRef]
- Von Thun, J.L.; Gillette, D.R. Guidance on Breach Parameters; US Department of the Interior, Bureau of Reclamation: Denver, CO, USA, 1990. [Google Scholar]
- Xu, Y.; Zhang, L.M. Breaching parameters for earth and rockfill dams. J. Geoteh. Geoenviron. 2009, 135, 1957–1970. [Google Scholar] [CrossRef]
- Chow, V.T. Open Channel Hydraulics; Blackburn Press: Caldwell, NJ, USA, 1959. [Google Scholar]
- NRCS. Manning’s n Values for Various Land Covers to Use for Dam Breach Analyses by NRCS in Kansas; NRCS: Washington, DC, USA, 2016. [Google Scholar]
- Papaioannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Kossieris, P. An operational method for flood directive implementation in ungauged urban areas. Hydrology 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Akoh, R.; Ishikawa, T.; Kojima, T.; Tomaru, M.; Maeno, S. High-resolution modeling of tsunami run-up flooding: A case study of flooding in Kamaishi city, Japan, induced by the 2011 Tohoku tsunami. NHESS 2017, 17, 1871–1883. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, E.; Sharma, S.; Lamichane, N. Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH J. Hydraul. Eng. 2022, 28, 110–126. [Google Scholar] [CrossRef]
- World Meteorological Organization. Manual on Estimation of Probable Maximum Precipitation (PMP); World Meteorological Organization: Geneva, Switzerland, 2009; No 1045. [Google Scholar]
- Wang, G. Probable Maximum Precipitation: Approaches and Methodology. Twelfth Session of the Commission for Hydrology of the World Meteorological Organization, 20–29 October 2004. Available online: https://www.yrce.cn/yrexport/whole.asp?id=wgan (accessed on 5 December 2022).
- Xuereb, K.; Moore, G.; Taylor, B. Development of the Method of Storm Transposition and Maximization for the West Coast of Tasmania (HRS Report No. 7); Hydrology Report Series; Hydrometeorological Advisory Services, Australian Bureau of Meteorology: Melbourne, Australia, 2001. [Google Scholar]
- Hansen, E.M. Probable Maximum Precipitation Estimations—United States between the Continental Divide and the 103rd Meridian (HMR No. 55A); United States Department of Commerce, National Oceanic and Atmospheric Administration, United States Department of Army Corps of Engineers, United States Department of Interior Bureau of Reclamation: Silver Spring, MD, USA, 1988. [Google Scholar]
- Zhang, Y.; Wang, Z. Estimating probable maximum storms in the middle and upper reaches of the Changjiang River using generalized depth-area-duration method. J. China Hydrol. 1988, 18, 13–18. [Google Scholar]
- Hershfield, D.M. Method for Estimating Probable Maximum Precipitation. J. AWWA 1965, 57, 965–972. [Google Scholar] [CrossRef]
- Douglas, E.M.; Barros, A.P. Probable maximum precipitation estimation using multifractals: Application in the eastern United States. J. Hydrometeorol. 2003, 4, 1012–1024. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; MacGraw-Hill Inc.: New York, NY, USA, 1988. [Google Scholar]
- Koutsoyiannis, D.; Xanthopoulos, T. Engineering Hydrology, 3rd ed.; National Technical University of Athens: Athens, Greek, 1999; 418p. [Google Scholar] [CrossRef]
- Special Secretariat for Waters of Greece. Implementation of Directive 2007/60/EC-Preparation of Intensity–Duration–Frequency (I-D-F) Curves at Country Level (in Greek). 2016. Available online: https://floods.ypeka.gr/egyFloods/IDF/IDF_Report_V4.pdf) (accessed on 5 December 2022).
- Duncan, W.; Huntley, C.; Hokenstrom, J.; Cudworth, A.; McDaniel, T. Design of Small Dams. A Water Resources Technical Publication; Final Report (No. PB-95-176368/XAB); Bureau of Reclamation, Engineering and Research Center: Denver, CO, USA, 1987. [Google Scholar]
- Brunner, G.W. 2D Modeling and Mapping with HEC-RAS v. 5 Monticello Dam Breach. US Army Corps of Engineers: Davis, CA, USA, 2015. [Google Scholar]
- Musolino, G.; Ahmadian, R.; Falconer, R.A. Comparison of flood hazard assessment criteria for pedestrians with a refined mechanics-based method. J. Hydrol. X 2020, 9, 100067. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Gou, L.; Pang, B. An Entropic Approach to Estimating the Instability Criterion of People in Floodwaters. Entropy 2021, 23, 74. [Google Scholar] [CrossRef] [PubMed]
- Hawkesbury-Nepean Floodplain Management Steering Committee. Designing Safer Subdivisions on Floodplains; Hawkesbury-Nepean Floodplain Management Steering Committee: Parramatta, Australia, 2006. [Google Scholar]
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Oeh, O. Floodplain Development Manual: The Management of Flood Liable Land; Department of Natural Resources: Sydney, NSW, Australia, 2005. [Google Scholar]
Land Cover | Area (km2) | % |
---|---|---|
Discontinuous urban fabric | 6.15 | 0.71 |
Industrial/commercial units | 3.15 | 0.36 |
Mineral extraction sites | 2.97 | 0.34 |
Non-irrigated arable land | 307.33 | 35.61 |
Pastures | 7.36 | 0.85 |
Complex cultivation patterns | 21.78 | 2.52 |
Land occupied by agriculture/natural vegetation | 94.38 | 10.94 |
Broad-leaved forest | 241.08 | 27.94 |
Coniferous forest | 5.73 | 0.66 |
Mixed forest | 8.70 | 1.01 |
Natural grasslands | 72.89 | 8.45 |
Sclerophyllous vegetation | 15.68 | 1.82 |
Transitional woodland–shrub | 75.73 | 8.78 |
Parameter | Value |
---|---|
Crest elevation (m a.s.l.) | 933 |
Crest length (m) | 538 |
Crest width (m) | 12 |
Maximum height of dam from foundation (m) | 67 |
Volume of storage area at crest elevation (×106 m3) | 14 |
Upstream dam face slope | 2:1 |
Downstream dam face slope | 1.8:1 |
Spillway maximum capacity (m3/s) | 420 |
Spillway crest elevation (m a.s.l.) | 928 |
Spillway width (m) | 35 |
Land Cover | Manning Coefficient (n) | Reference |
---|---|---|
Cultivated areas | 0.030–0.04/0.035 | [44]/[45] |
Forests | 0.1/0.16 | [46]/[47] |
Natural Minor Streams on plain | 0.035 | [44] |
Discontinuous urban fabric | 0.013 | [46] |
Residential area (low intensity) | 0.05 | [47] |
Pastures | 0.030–0.035/0.03 | [44]/[46] |
Breach Parameters and Data | Dam Failure Mode | |
---|---|---|
Overtopping | Piping | |
Manning’s n value | 0.035 s m−1/3 | 0.035 s m−1/3 |
Storage area volume | 13.0 × 106 m3 | 13.0 × 106 m3 |
Final bottom width | 25 m | 23 m |
Final bottom elevation | +880 m a.s.l | +880 m a.s.l. |
Left side slope | 1 | 0.7 |
Right side slope | 1 | 0.7 |
Weir coefficient for breach area | 1.44 | 1.44 |
Breach formation time | 0.38 h | 0.38 h |
Trigger failure at water surface elevation (starting water surface) | +933 m a.s.l. | +933 m a.s.l. |
Flood Severity Category | Depth*Velocity Range (m2/s) |
---|---|
Low | <0.2 |
Medium | 0.2–0.5 |
High | 0.5–1.5 |
Very High | 1.5–2.5 |
Extreme | >2.5 |
Overtopping | Piping | |
---|---|---|
Maximum discharge on the dam breach structure | 13,365 m3/s | 10,800m3/s |
Maximum discharge on the outlet of the 2D flow area | 673.3 m3/s | 266.2 m3/s |
First arrival time of flood water on the outlet of the 2D flow area (after the beginning of failure) | 216 min | 270 min |
Arrival time of maximum discharge on the outlet of the 2D flow area (after the beginning of failure) | 279 min | 319 min |
Maximum flood water depth | 30.75 m | 29.2 m |
Maximum flood water velocity | 21 m/s | 20.5 m/s |
Simulation Outputs for Mesh Size Sensitivity | Mesh Size | ||
---|---|---|---|
25 × 25 | 50 × 50 | 100 × 100 | |
Maximum discharge on the outlet of the 2D flow area (m3/s) | 673.3 | 617.48 (−8.3%) | 614.77 (−8.7%) |
Arrival time of maximum discharge on the outlet of the 2D flow area (min) | 279 | 272 (−2.5%) | 258 (−7.5%) |
Maximum flood water depth (m) | 30.75 | 29.3 (−4.7%) | 22.9 (−25.5%) |
Flood Severity Category | Max Depth (m) | Overtopping | Piping | ||
---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | ||
Low/Medium | 0–3 | 17.73 | 70.89 | 16.95 | 73.17 |
High/Very High | 3–6 | 5.44 | 21.76 | 4.75 | 20.51 |
Extreme | >6 | 1.83 | 7.35 | 1.46 | 6.32 |
Total Area: | 25.01 | 100 | 23.16 | 100 |
Flood Severity Category | Max Velocity (m/s) | Overtopping | Piping | ||
---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | ||
Low/High | 0–2 | 13.68 | 54.69 | 13.20 | 57.00 |
Very High/Extreme | >2 | 11.33 | 45.32 | 9.96 | 43.00 |
Total Area: | 25.01 | 100 | 23.16 | 100 |
Flood Severity Category | Depth*Velocity Range (m2/s) | Overtopping | Piping | ||
---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | ||
Low | <0.2 | 4.33 | 17.31 | 4.76 | 20.55 |
Medium | 0.2–0.5 | 2.45 | 9.80 | 3.03 | 13.08 |
High | 0.5–1.5 | 5.14 | 20.55 | 3.83 | 16.54 |
Very High | 1.5–2.5 | 1.98 | 7.92 | 1.86 | 8.03 |
Extreme | >2.5 | 11.11 | 44.42 | 9.68 | 41.80 |
Total Area: | 25.01 | 100 | 23.16 | 100 |
Flood Severity Category | Depth*Velocity Range (m2/s) | Overtopping | Piping | ||
---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | ||
Low | 0–0.8 | 8.88 | 35.51 | 9.71 | 41.93 |
High | >0.8 | 16.13 | 64.49 | 13.45 | 58.07 |
Total Area: | 25.01 | 100 | 23.16 | 100 |
Land Cover | Area (km2) | Area (%) |
---|---|---|
Discontinuous urban fabric | 0.68 | 2.72 |
Non-irrigated arable land | 15.64 | 62.52 |
Complex cultivation patterns | 5.30 | 21.19 |
Land occupied by agriculture or natural vegetation | 2.53 | 10.11 |
Broad-leaved forest | 0.004 | 0.02 |
Mixed forest | 0.41 | 1.64 |
Pastures | 0.04 | 0.16 |
Sclerophyllous vegetation | 0.15 | 0.60 |
Transitional woodland/shrub | 0.26 | 1.04 |
Total Area: | 25.01 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattas, C.; Karpouzos, D.; Georgiou, P.; Tsapanos, T. Two-Dimensional Modelling for Dam Break Analysis and Flood Hazard Mapping: A Case Study of Papadia Dam, Northern Greece. Water 2023, 15, 994. https://doi.org/10.3390/w15050994
Mattas C, Karpouzos D, Georgiou P, Tsapanos T. Two-Dimensional Modelling for Dam Break Analysis and Flood Hazard Mapping: A Case Study of Papadia Dam, Northern Greece. Water. 2023; 15(5):994. https://doi.org/10.3390/w15050994
Chicago/Turabian StyleMattas, Christos, Dimitris Karpouzos, Pantazis Georgiou, and Theodoros Tsapanos. 2023. "Two-Dimensional Modelling for Dam Break Analysis and Flood Hazard Mapping: A Case Study of Papadia Dam, Northern Greece" Water 15, no. 5: 994. https://doi.org/10.3390/w15050994