Mapping and Assessment of Flood Risk in the Wadi Al-Lith Basin, Saudi Arabia
Abstract
:1. Introduction
2. Study Area
3. Database
4. Methodology
4.1. Elevation Factor
4.2. Slope Factor
4.3. Drainage Density Factor
4.4. Topographic Wetness Index (TWI)
4.5. Rainfall Factor
4.6. Soil Factor
4.7. Land Use/Land Cover Factor
4.8. Analytical Hierarchy Process (AHP)
5. Results
Validation and Modeling of Flood Hazards Using HEC-RAS
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-Based Flood Susceptibility Assessment and Its Mapping in Iran: A Comparison between Frequency Ratio and Weights-of-Evidence Bivariate Statistical Models with Multi-Criteria Decision-Making Technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Sahana, M.; Sajjad, H. Vulnerability to Storm Surge Flood Using Remote Sensing and GIS Techniques: A Study on Sundarban Biosphere Reserve, India. Remote Sens. Appl. Soc. Environ. 2019, 13, 106–120. [Google Scholar] [CrossRef]
- Chan, S.W.; Abid, S.K.; Sulaiman, N.; Nazir, U.; Azam, K. A Systematic Review of the Flood Vulnerability Using Geographic Information System. Heliyon 2022, 8, e09075. [Google Scholar] [CrossRef] [PubMed]
- Wahlstrom, M.; Guha-Sapir, D. The Human Cost of Weather-Related Disasters 1995–2015; UNISDR: Geneva, Switzerland, 2015. [Google Scholar]
- Kourgialas, N.N.; Karatzas, G.P. Flood Management and a GIS Modelling Method to Assess Flood-Hazard Areas—A Case Study. Hydrol. Sci. J. 2011, 56, 212–225. [Google Scholar] [CrossRef]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Bagyaraj, M. Study and Analysis of Chennai Flood 2015 Using GIS and Multicriteria Technique. J. Geogr. Inf. Syst. 2017, 9, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Shreevastav, B.B.; Tiwari, K.R.; Mandal, R.A.; Nepal, A. Assessing Flood Vulnerability on Livelihood of the Local Community: A Case from Southern Bagmati Corridor of Nepal. Prog. Disaster Sci. 2021, 12, 100199. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Dano, U.L. Sustainable Urban Planning Strategies for Mitigating Climate Change in Saudi Arabia. Environ. Dev. Sustain. 2020, 22, 5129–5152. [Google Scholar] [CrossRef]
- Wwap, U. World Water Assessment Programme: The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012. [Google Scholar]
- Bekele, E.G.; Knapp, H.V. Watershed Modeling to Assessing Impacts of Potential Climate Change on Water Supply Availability. Water Resour. Manag. 2010, 24, 3299–3320. [Google Scholar] [CrossRef]
- Rabezanahary Tanteliniaina, M.F.; Rahaman, M.H.; Zhai, J. Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT. Water 2021, 13, 1239. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. Climate Change 2021: The Physical Science Basis; Contribution of working group, to the sixth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK, 2021; Volume 2. [Google Scholar]
- Chen, Y.; Wang, L.; Shi, X.; Zeng, C.; Wang, Y.; Wang, G.; Qiangba, C.; Yue, C.; Sun, Z.; Renzeng, O.; et al. Impact of Climate Change on the Hydrological Regimes of the Midstream Section of the Yarlung Tsangpo River Basin Based on SWAT Model. Water 2023, 15, 685. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global Warming Increases the Frequency of River Floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S.N. The Impacts of Climate Change on River Flood Risk at the Global Scale. Clim. Change 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global Projections of River Flood Risk in a Warmer World: River flood risk in a warmer world. Earths Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Shustikova, I.; Domeneghetti, A.; Neal, J.C.; Bates, P.; Castellarin, A. Comparing 2D Capabilities of HEC-RAS and LISFLOOD-FP on Complex Topography. Hydrol. Sci. J. 2019, 64, 1769–1782. [Google Scholar] [CrossRef]
- Watson, V. Who Will Plan Africa’s Cities? Africa Research Institute: London, UK, 2013. [Google Scholar]
- Saha, A.K.; Agrawal, S. Mapping and Assessment of Flood Risk in Prayagraj District, India: A GIS and Remote Sensing Study. Nanotechnol. Environ. Eng. 2020, 5, 11. [Google Scholar] [CrossRef]
- Saharia, M.; Kirstetter, P.-E.; Vergara, H.; Gourley, J.J.; Hong, Y.; Giroud, M. Mapping Flash Flood Severity in the United States. J. Hydrometeorol. 2017, 18, 397–411. [Google Scholar] [CrossRef]
- Trigo, R.M.; Ramos, C.; Pereira, S.S.; Ramos, A.M.; Zêzere, J.L.; Liberato, M.L.R. The Deadliest Storm of the 20th Century Striking Portugal: Flood Impacts and Atmospheric Circulation. J. Hydrol. 2016, 541, 597–610. [Google Scholar] [CrossRef]
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Abu-Abdullah, M.M.; AlFadail, E.A.; Skilodimou, H.D.; Bathrellos, G.D. The Devastating Flood in the Arid Region a Consequence of Rainfall and Dam Failure: Case Study, Al-Lith Flood on 23th November 2018, Kingdom of Saudi Arabia. Z. Für Geomorphol. 2021, 63, 115–136. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash Flood Susceptibility Assessment in Jeddah City (Kingdom of Saudi Arabia) Using Bivariate and Multivariate Statistical Models. Environ. Earth Sci. 2015, 75, 12. [Google Scholar] [CrossRef]
- Hijji, M.; Amin, S.; Iqbal, R.; Harrop, W. A Critical Evaluation of the Rational Need for an IT Management System for Flash Flood Events in Jeddah, Saudi Arabia. In Proceedings of the 2013 Sixth International Conference on Developments in eSystems Engineering, Sharjah, United Arab Emirates, 7–10 December 2013; pp. 209–214. [Google Scholar]
- Elquliti, S.; Alfalatah, S.; Alghamdi, M.; Alabdali, Y.; Alrowaily, A. Impact Analysis for Flooding AREA, In Saudi Arabia. Int. J. Sci. Tech. Res. Eng. 2016, 1, 200–220. [Google Scholar]
- Alrehaili, N. An Investigation into Emergency Planning Requirements and Challenges of Disaster Management in the Kingdom of Saudi Arabia. Int. J. Disaster Manag. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Elkarim, A.A. Intergration remote sensing and hydrologic, hydroulic modelling on assessment flood risk and mitigation: Al-lith city, ksa. Int. J. GEOMATE 2020, 18, 252–280. [Google Scholar] [CrossRef]
- De Risi, R.; Jalayer, F.; De Paola, F.; Carozza, S.; Yonas, N.; Giugni, M.; Gasparini, P. From Flood Risk Mapping toward Reducing Vulnerability: The Case of Addis Ababa. Nat. Hazards 2020, 100, 387–415. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Sinha, R. Flood Risk Assessment in the Kosi Megafan Using Multi-Criteria Decision Analysis: A Hydro-Geomorphic Approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A. Hospital Site Selection Using Fuzzy AHP and Its Derivatives. J. Environ. Manage. 2009, 90, 3048–3056. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Sudarsana Raju, G.; Sreenivasulu, Y.; Siddi Raju, R. Delineation of Groundwater Potential Zones in Semi-Arid Region of Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India Using Fuzzy Logic, AHP and Integrated Fuzzy-AHP Approaches. HydroResearch 2019, 2, 97–108. [Google Scholar] [CrossRef]
- Siddayao, G.; Valdez, S.; Fernandez, P. Analytic Hierarchy Process (AHP) in Spatial Modeling for Floodplain Risk Assessment. Int. J. Mach. Learn. Comput. 2014, 4, 450–457. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and Analytical Hierarchy Process: Application in Rhodope–Evros Region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Tien Bui, D.; Duan, H. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Agrawal, S.; Gupta, R.D. Cloud Enabled SDI Architecture: A Review. Earth Sci. Inform. 2020, 13, 211–231. [Google Scholar] [CrossRef]
- Duan, H.-F.; Gao, X. Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study. Water Resour. Manag. 2019, 33, 3523–3545. [Google Scholar] [CrossRef]
- Li, F.; Yan, X.-F.; Duan, H.-F. Sustainable Design of Urban Stormwater Drainage Systems by Implementing Detention Tank and LID Measures for Flooding Risk Control and Water Quality Management. Water Resour. Manag. 2019, 33, 3271–3288. [Google Scholar] [CrossRef]
- Feng, W.; Shao, Z.; Gong, H.; Xu, L.; Yost, S.A.; Ma, H.; Chai, H. Experimental and Numerical Investigation of Flow Distribution Pattern at a T-Shape Roadway Crossing under Extreme Storms. Eng. Appl. Comput. Fluid Mech. 2022, 16, 2286–2300. [Google Scholar] [CrossRef]
- Elsebaie, I.H.; El Alfy, M.; Kawara, A.Q. Spatiotemporal Variability of Intensity–Duration–Frequency (IDF) Curves in Arid Areas: Wadi AL-Lith, Saudi Arabia as a Case Study. Hydrology 2022, 9, 6. [Google Scholar] [CrossRef]
- Ogato, G.S.; Bantider, A.; Abebe, K.; Geneletti, D. Geographic Information System (GIS)-Based Multicriteria Analysis of Flooding Hazard and Risk in Ambo Town and Its Watershed, West Shoa Zone, Oromia Regional State, Ethiopia. J. Hydrol. Reg. Stud. 2020, 27, 100659. [Google Scholar] [CrossRef]
- Alarifi, S.S.; Abdelkareem, M.; Abdalla, F.; Alotaibi, M. Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia. Sustainability 2022, 14, 14145. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood Risk Assessment and Mapping Using AHP in Arid and Semiarid Regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Almodayan, A. Analytical Hierarchy (AHP) Process Method for Environmental Hazard Mapping for Jeddah City, Saudi Arabia. J. Geosci. Environ. Prot. 2018, 06, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Geospatial Mapping of Flood Susceptibility and Hydro-Geomorphic Response to the Floods in Ulhas Basin, India. Remote Sens. Appl. Soc. Environ. 2019, 14, 60–74. [Google Scholar] [CrossRef]
- Liuzzo, L.; Sammartano, V.; Freni, G. Comparison between Different Distributed Methods for Flood Susceptibility Mapping. Water Resour. Manag. 2019, 33, 3155–3173. [Google Scholar] [CrossRef]
- Das, S. Geographic Information System and AHP-Based Flood Hazard Zonation of Vaitarna Basin, Maharashtra, India. Arab. J. Geosci. 2018, 11, 576. [Google Scholar] [CrossRef]
- Rimba, A.B.; Setiawati, M.D.; Sambah, A.B.; Miura, F. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urban Sci. 2017, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Wondim, Y.K. Flood Hazard and Risk Assessment Using GIS and Remote Sensing in Lower Awash Sub-Basin, Ethiopia. J. Environ. Earth Sci. 2016, 6, 69–86. [Google Scholar]
- Khosravi, K.; Melesse, A.M.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Hong, H. Chapter 33—Flood Susceptibility Mapping at Ningdu Catchment, China Using Bivariate and Data Mining Techniques. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–434. ISBN 978-0-12-815998-9. [Google Scholar]
- Santato, S.; Bender, S.; Schaller, M. The European Floods Directive and Opportunities Offered by Land Use Planning, CSC Report 12; Climate Service Center: Hamburg, Germany, 2013; 79p. [Google Scholar]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M. Understanding Flood Regime Changes in Europe: A State-of-the-Art Assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Zhiyu, L.; Xiaotao, C.; Zuhua, C.; Haotao, W.; Li, Z.; Lai, E.S.; Kunitsugu, M.; Kim, Y.; Cheong, T.S.; Chung, G. Guidelines on Urban Flood Risk Management (UFRM); ESCAP/WMO Typhoon Committee: Macao, China, 2013. [Google Scholar]
- Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Fura, G.D. Analysing and Modelling Urban Land Cover Change for Run-off Modelling in Kampala, Uganda. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2013. [Google Scholar]
- Saaty, T.L. What Is the Analytic Hierarchy Process? In Mathematical Models for Decision Support; Mitra, G., Greenberg, H.J., Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J., Eds.; Springer: Berlin, Heidelberg, 1988; pp. 109–121. ISBN 978-3-642-83557-5. [Google Scholar]
- Chakraborty, S.; Mukhopadhyay, S. Assessing Flood Risk Using Analytical Hierarchy Process (AHP) and Geographical Information System (GIS): Application in Coochbehar District of West Bengal, India. Nat. Hazards 2019, 99, 247–274. [Google Scholar] [CrossRef]
- Dano, U.L. Flash Flood Impact Assessment in Jeddah City: An Analytic Hierarchy Process Approach. Hydrology 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Yan, J.; Ghaffar, B.; Qin, S.; Mousa, B.G.; Sharifi, A.; Huq, M.E.; Aslam, M. Flash Flood Susceptibility Assessment and Zonation by Integrating Analytic Hierarchy Process and Frequency Ratio Model with Diverse Spatial Data. Water 2022, 14, 3069. [Google Scholar] [CrossRef]
- Ramkar, P.; Yadav, S.M. Flood Risk Index in Data-Scarce River Basins Using the AHP and GIS Approach. Nat. Hazards 2021, 109, 1119–1140. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-Based MCDM—AHP Modeling for Flood Susceptibility Mapping of Arid Areas, Southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Kittipongvises, S.; Phetrak, A.; Rattanapun, P.; Brundiers, K.; Buizer, J.L.; Melnick, R. AHP-GIS Analysis for Flood Hazard Assessment of the Communities Nearby the World Heritage Site on Ayutthaya Island, Thailand. Int. J. Disaster Risk Reduct. 2020, 48, 101612. [Google Scholar] [CrossRef]
- Dano, U.L. An AHP-Based Assessment of Flood Triggering Factors to Enhance Resiliency in Dammam, Saudi Arabia. GeoJournal 2022, 87, 1945–1960. [Google Scholar] [CrossRef]
Flood Hazard Factors | Elevation | Slope | TWI | Soil | Drainage Density | Rainfall | LULC |
---|---|---|---|---|---|---|---|
Elevation | 1 | 1 | 1 | 4 | 3 | 3 | 3 |
Slope | 1 | 1 | 1 | 5 | 1 | 3 | 3 |
TWI | 1 | 1 | 1 | 7 | 3 | 1 | 5 |
Soil | 0.25 | 0.20 | 0.14 | 1 | 1 | 1 | 1 |
Drainage Density | 0.33 | 1.00 | 0.33 | 1 | 1 | 1 | 1 |
Rainfall | 0.33 | 0.33 | 1.00 | 1 | 1 | 1 | 2 |
LULC | 0.33 | 0.33 | 0.20 | 1 | 1 | 0.5 | 1 |
Total | 4.25 | 4.87 | 4.68 | 20 | 11 | 10.5 | 16 |
Flood Hazard Factors | Elevation | Slope | TWI | Soil | Drainage Density | Rainfall | LULC | Priority Vector X | Percent (%) |
---|---|---|---|---|---|---|---|---|---|
Elevation | 0.24 | 0.21 | 0.21 | 0.20 | 0.27 | 0.29 | 0.19 | 0.229 | 22.9 |
Slope | 0.24 | 0.21 | 0.21 | 0.25 | 0.09 | 0.29 | 0.19 | 0.21 | 21.0 |
TWI | 0.24 | 0.21 | 0.21 | 0.35 | 0.27 | 0.10 | 0.31 | 0.241 | 24.1 |
Soil | 0.06 | 0.04 | 0.03 | 0.05 | 0.09 | 0.10 | 0.06 | 0.061 | 6.1 |
Drainage Density | 0.08 | 0.21 | 0.07 | 0.05 | 0.09 | 0.10 | 0.06 | 0.093 | 9.3 |
Rainfall | 0.08 | 0.07 | 0.21 | 0.05 | 0.09 | 0.10 | 0.13 | 0.103 | 10.3 |
LULC | 0.08 | 0.07 | 0.04 | 0.05 | 0.09 | 0.05 | 0.06 | 0.063 | 6.3 |
Total | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
Number of Criteria (N) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Random Index (RI) | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Parameters | Relative Weight (%) | Reclassified Parameter | Ranking | Hazard |
---|---|---|---|---|
Elevation | 22.87 | 2000–2700 | 1 | Very low |
1500–1900 | 2 | Low | ||
880–1400 | 3 | Moderate | ||
420–870 | 4 | High | ||
−9.1–410 | 5 | Very high | ||
Slope | 20.98 | 37–83 | 1 | Very low |
28–38 | 2 | Low | ||
19–27 | 3 | Moderate | ||
7.9–18 | 4 | High | ||
0–7.8 | 5 | Very high | ||
TWI | 24.07 | 6.6–9 | 1 | Very low |
9.1–11 | 2 | Low | ||
12.0–14 | 3 | Moderate | ||
15–17 | 4 | High | ||
18–25 | 5 | Very high | ||
Soil | 6.13 | |||
Loam | 2 | Low | ||
Sandy Loam | 3 | Moderate | ||
Clay | 4 | High | ||
Drainage Density | 9.34 | 0–0.52 | 1 | Very low |
0.52–1.2 | 2 | Low | ||
1.3–1.7 | 3 | Moderate | ||
1.8–2.1 | 4 | High | ||
2.2–2.9 | 5 | Very high | ||
Rainfall | 10.31 | 14–27 | 1 | Very low |
28–35 | 2 | Low | ||
36–41 | 3 | Moderate | ||
42–47 | 4 | High | ||
48–55 | 5 | Very high | ||
LULC | 6.30 | |||
Bare land | 2 | Low | ||
Farmland | 3 | Moderate | ||
Mountains | 4 | High | ||
Urban area | 5 | Very high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsebaie, I.H.; Kawara, A.Q.; Alnahit, A.O. Mapping and Assessment of Flood Risk in the Wadi Al-Lith Basin, Saudi Arabia. Water 2023, 15, 902. https://doi.org/10.3390/w15050902
Elsebaie IH, Kawara AQ, Alnahit AO. Mapping and Assessment of Flood Risk in the Wadi Al-Lith Basin, Saudi Arabia. Water. 2023; 15(5):902. https://doi.org/10.3390/w15050902
Chicago/Turabian StyleElsebaie, Ibrahim H., Atef Q. Kawara, and Ali O. Alnahit. 2023. "Mapping and Assessment of Flood Risk in the Wadi Al-Lith Basin, Saudi Arabia" Water 15, no. 5: 902. https://doi.org/10.3390/w15050902