UVC-Assisted Tertiary Treatments for the Removal of Pollutants of Emerging Concern in Real WWTP Matrices
Abstract
1. Introduction
2. Experimental Part
2.1. Reagents and Chemicals
2.2. Reactions
2.3. Chemical Analysis
2.4. Statistical Treatment of Data
3. Results and Discussion
3.1. Photolysis of Acetaminophen
3.2. Photo-Fenton Process
3.3. Combination of the Photochemical Processes with Coagulation Flocculation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN-Water Analytical Brief Water-Use Efficiency. 2021. Available online: https://www.unwater.org/publications/un-water-analytical-brief-water-use-efficiency. (accessed on 4 October 2022).
- Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741 (accessed on 24 November 2022).
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.G.; Maqbool, F.; Hu, Y. Removal of antibiotics pollutants in wastewater by UV-based advanced oxidation processes: Influence of water matrix components, processes optimization and application: A review. J. Water Process Eng. 2022, 45, 102496. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, N.C.; Kazmi, A.A. Ballasted sand flocculation for water, wastewater and CSO treatment. Environ. Technol. Rev. 2016, 5, 57–67. [Google Scholar] [CrossRef]
- Rizzo, L. Addressing main challenges in the tertiary treatment of urban wastewater: Are homogeneous photodriven AOPs the answer? Environ. Sci. Water Res. Technol. 2022, 8, 2145. [Google Scholar] [CrossRef]
- de Boer, S.; Gonzalez-Rodríguez, J.J.; Conde, J.J.; Moreira, M.T. Benchmarking tertiary water treatments for the removal of micropollutants and pathogens based on operational and sustainability criteria. J. Water Process Eng. 2022, 46, 102587. [Google Scholar] [CrossRef]
- Nazir, R.; Khan, M.; Rehman, R.U.; Shujah, S.; Khan, M.; Ullah, M.; Zada, A.; Mahmood, N.; Ahmad, I. Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds. Soil Water Res. 2020, 15, 166–172. [Google Scholar] [CrossRef]
- Ullah, M.; Nazir, R.; Khan, M.; Khan, W.; Shah, M.; Afridi, S.G.; Zada, A. The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells. Soil Water Res. 2020, 15, 30–37. [Google Scholar] [CrossRef]
- Clancy, J.L.; Hargy, T.M.; Marshall, M.M.; Dyksen, J.E. UV light inactivation of Cryptosporidium oocysts. J. Am. Water Works Assoc. 1998, 90, 92–102. [Google Scholar] [CrossRef]
- Zhang, X.; Kamali, M.; Zhang, S.; Yu, X.; Appels, L.; Cabooter, D.; Dewil, R. Photo-assisted (waste)water treatment technologies —A scientometric-based critical review. Desalination 2022, 538, 115905. [Google Scholar] [CrossRef]
- Solomou, N.; Minella, M.; Vione, D.; Psillakis, E. UVC-induced degradation of cilastatin in natural water and treated wastewater. Chemosphere 2021, 280, 130668. [Google Scholar] [CrossRef]
- Pozdnyakov, I.P.; Snytnikova, O.A.; Yanshole, V.V.; Fedunov, R.G.; Grivin, V.P.; Plyusnin, V.F. Direct UV photodegradation of herbicide triclopyr in aqueous solutions: A mechanistic study. Chemosphere 2022, 293, 133573. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Feng, Z.; Zhou, B.; Chen, H. Yuan. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. Sci. Total Environ. 2022, 844, 157162. [Google Scholar] [CrossRef] [PubMed]
- Wols, B.A. CFD in drinking water treatment. 4TU. ResearchData. Collection. Available online: https://data.4tu.nl/collections/CFD_in_drinking_water_treatment/5065466 (accessed on 24 February 2023).
- Lopez, J.L.; Einschlag, F.S.; Gonzalez, M.C.; Capparelli, A.L.; Oliveros, E.; Hashem, T.M.; Braun, A.M. Hydroxyl radical initiated photodegradation of 4-chloro-3,5-dinitrobenzoic acid in aqueous solution. J. Photochem. Photobiol. A Chem. 2000, 137, 177–184. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Bernabeu, A.; Vercher, R.F.; Santos-Juanes, L.; Simón, P.J.; Lardín, C.; Martínez, M.A.; Vicente, J.A.; González, R.; Llosá, C.; Arques, A.; et al. Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catal. Today 2011, 161, 235–240. [Google Scholar] [CrossRef]
- Bernabeu, A.; Palacios, S.; Vicente, R.; Vercher, R.; Malato, S.; Arques, A.; Amat, A.M. Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chem. Eng. J. 2012, 198–199, 65–72. [Google Scholar] [CrossRef]
- Klamerth, N.; Malato, S.; Maldonado, M.I.; Agüera, A.; Fernández-Alba, A. Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catal. Today 2011, 161, 241–246. [Google Scholar] [CrossRef]
- Santos-Juanes, L.; Amat, A.M.; Arques, A. Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems. Curr. Org. Chem. 2017, 21, 1074–1083. [Google Scholar] [CrossRef]
- Moreno-Andrés, J.; Vallés, I.; García-Negueroles, P.; Santos-Juanes, L.; Arques, A. Enhancement of iron-based photo-driven processes by the presence of catechol moieties. Catalysts 2021, 11, 372. [Google Scholar] [CrossRef]
- García-Ballesteros, S.; García-Negueroles, P.; Amat, A.M.; Arques, A. Humic-like substances as auxiliaries to enhance advanced oxidation processes. ACS Omega 2022, 7, 3151–3157. [Google Scholar] [CrossRef]
- Gomis, J.; Carlos, L.; Bianco Prevot, A.C.; Teixeira, S.C.; Mora, M.; Amat, A.M.; Vicente, R.; Arques, A. Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catal. Today 2015, 240, 39–45. [Google Scholar] [CrossRef]
- Burns, E.E.; Carter, L.J.; Kolpin, D.W.; Thomas-Oates, J.; Boxall, A.B.; Boxall, A. Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Res. 2018, 137, 72–85. [Google Scholar] [CrossRef]
- Martínez Bueno, M.J.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012, 164, 267–273. [Google Scholar] [CrossRef]
- Wols, B.A.; Hofman-Caris, C.H.M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012, 46, 2815–2827. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Santos dos, W.N.L.; Quintella, C.M.; Neto b, B.B.; Bosque-Sendra, J.M. Doehlert matrix: A chemometric tool for analytical chemistry—Review. Talanta 2004, 63, 1061–1067. [Google Scholar] [CrossRef]
- Lhiaubet-Vallet, V.; Marin, M.; Jimenez, O.; Gorchs, O.; Trullas, C.; Miranda, M.A. Filter–filter interactions. Photostabilization, triplet quenching and reactivity with singlet oxygen. Photoche. Photobiol. Sci. 2010, 9, 552–558. [Google Scholar] [CrossRef]
- Scaiano, J.C.T. Photochemistry Essentials. Am. Chem. Soc. Focus 2022, 25. [Google Scholar] [CrossRef]
- García-Ballesteros, S.; Mora, M.; Vicente, R.; Sabater, C.; Castillo, M.A.; Arques, A.; Amat, A.M. Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry. Chem. Eng. J. 2016, 288, 126–136. [Google Scholar] [CrossRef]
- Yang, L.; Hur, J.; Zhuang, W. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: A review Environ. Sci. Pollut. Res. 2015, 22, 6500–6510. [Google Scholar] [CrossRef]
- Sciscenko, I.; Arques, A.; Micó, P.; Mora, M.; García-Ballesteros, S. Emerging applications of EEM-PARAFAC for water treatment: A concise review. Chem. Eng. J. Adv. 2022, 10, 100286. [Google Scholar] [CrossRef]
- Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205–206, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Mater. 2015, 286, 261–268. [Google Scholar] [CrossRef] [PubMed]










| Experiment | [H2O2] (mM) | Flow (L·h−1) | Degradation (%) |
|---|---|---|---|
| 1 | 1.1 | 2.9 | 58.6% |
| 2 | 2.1 | 2.9 | 76.8% |
| 3 | 1.6 | 3.9 | 71.4% |
| 4 | 0.1 | 2.9 | 24.7% |
| 5 | 0.6 | 1.8 | 66.3% |
| 6 | 1.6 | 1.8 | 80.7% |
| 7 | 0.6 | 3.9 | 44.4% |
| 8 | 1.1 | 2.9 | 58.4% |
| 9 | 1.07 | 2.9 | 57.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Timoner, R.; Mora, M.; Zuriaga, E.; Climent, J.; Santos-Juanes, L.; Amat, A.M.; Arques, A. UVC-Assisted Tertiary Treatments for the Removal of Pollutants of Emerging Concern in Real WWTP Matrices. Water 2023, 15, 882. https://doi.org/10.3390/w15050882
López-Timoner R, Mora M, Zuriaga E, Climent J, Santos-Juanes L, Amat AM, Arques A. UVC-Assisted Tertiary Treatments for the Removal of Pollutants of Emerging Concern in Real WWTP Matrices. Water. 2023; 15(5):882. https://doi.org/10.3390/w15050882
Chicago/Turabian StyleLópez-Timoner, Rubén, Margarita Mora, Elena Zuriaga, Javier Climent, Lucas Santos-Juanes, Ana M. Amat, and Antonio Arques. 2023. "UVC-Assisted Tertiary Treatments for the Removal of Pollutants of Emerging Concern in Real WWTP Matrices" Water 15, no. 5: 882. https://doi.org/10.3390/w15050882
APA StyleLópez-Timoner, R., Mora, M., Zuriaga, E., Climent, J., Santos-Juanes, L., Amat, A. M., & Arques, A. (2023). UVC-Assisted Tertiary Treatments for the Removal of Pollutants of Emerging Concern in Real WWTP Matrices. Water, 15(5), 882. https://doi.org/10.3390/w15050882

