Climate Water Balance in the Warm Half-Year and Its Circulation Conditions in the Sudetes Mountains and Their Foreland (Poland and Czechia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. RR, Ep, and CWB in the Warm Half-Year of 1981–2020
3.2. Multiannual Changes of RR, Ep, and CWB
3.3. RR, Ep, CWB, and Circulation Conditions
3.4. Changes in RR, Ep, and CWB Depending on the Circulation Conditions
4. Discussion and Conclusions
- CWB has not significantly changed over the last decades in the Sudetes Mountains and their foreland. However, the positive trend for Ep can potentially contribute to the decrease in CWB in the future if such a trend continues.
- The rates of Ep in the warm half year of 1981–2020 have noticeably increased in all the hypsometric zones. Consequently, a further increase can have a crucial effect on the ecological state of the summit zone and for the agriculture production in the regions located lower down.
- The significant changes in CWB under the eastern, western, and southern circulation are generally the result of the negative/positive trend for the frequency of these types of circulation. The negative trends of CWB for the southern circulation concern the eastern part of the region, while the increase under the eastern types mainly affects the Western Sudetes. Such a distribution can additionally intensify differences in CWB between the Eastern and Western Sudetes.
- Taking into account both changes in CWB for the southern, western, and eastern circulation and non-significant trends for the vorticity types, it can be assumed that changes in CWB can be more related to the influence of circulation sectors than to the vorticity.
- Considering the fact that extreme precipitations in the Sudetes Mountains often occur under the eastern circulation (such as SEc), the positive trend for this type of weather can contribute to the further intensification of heavy rainfall episodes.
- Taking into account the sensitivity of mountain regions to the CWB changes, the results of this study can be applied in the planning process related to the local water management and ecological activities. They can also be used in the analysis concerning the hydrological aspects of water balance in the Sudetes Mountains and their foreland.
Funding
Data Availability Statement
Conflicts of Interest
References
- OECD. Water, Growth and Finance. Policy Perspectives. OECD Better Policies for Better Lives. 2016; p. 36. Available online: https://www.oecd.org/environment/resources/Water-Growth-and-Finance-policy-perspectives.pdf (accessed on 25 January 2023).
- Kubiak-Wójcicka, K.; Machula, S. Influence of Climate Changes on the State of Water Resources in Poland and Their Usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Turral, H.; Burke, J.; Faurès, J.-M. Climate Change Water and Food Security; FAO Water Reports: Rome, Italy, 2011; Volume 200, Available online: https://www.fao.org/3/i2096e/i2096e.pdf (accessed on 25 January 2023).
- Kundzewicz, Z.W.; Jania, J.A. Extreme Hydro-meteorological Events and their Impacts. From the Global down to the Regional Scale. Geogr. Pol. 2007, 75, 9–24. [Google Scholar]
- IPCC. AR5 Synthesis Report: Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. 2014; p. 151. Available online: https://archive.ipcc.ch/report/ar5/syr/ (accessed on 13 September 2022).
- EC, Regions. The Climate Change Challenge for European Regions. European Commission, Directorate-General Regional Policy, Policy Development, Conception, Forward Studies, Impact Assessment, 2009, Brussels, Belgium. 2020. Available online: https://climate-adapt.eea.europa.eu/metadata/publications/regions-2020-the-climate-challenge-for-european-regions (accessed on 13 September 2022).
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; JRC Scientific and Technical Reports; European Comission, Institute for Environment and Sustainability: Mestreech, The Netherlands, 2008; Volume 82. [Google Scholar]
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Rannov, S., Neubert, M., Eds.; Spring: Cham, Switzerland, 2014; Volume 58, pp. 17–30. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, I.B.; Fleig, A.K.; Tallaksen, M.; Hisdal, H. Recent trends in monthly temperature and precipitation patterns in Europe. In Hydrology in a Changing World: Environmental and Human Dimensions; Ben Ammar, S., Taupin, J.D., Zouari, K., Eds.; IAHS Publication: Montpellier, France, 2014; Volume 363, pp. 132–137. [Google Scholar]
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Danilovich, I.; Castro, F.D.; Dumitrescu, A.; Labuda, M.; et al. Long-term changes in drought indices in eastern and central Europe. Int. J. Clim. 2021, 42, 225–249. [Google Scholar] [CrossRef]
- Lejcuś, K.; Dąbrowska, J.; Garlikowski, D.; Kordas, D. Water Loss from Soil and Water Absorbing Geocomposite. In Proceedings of the 6th International Conference on Environmental Science and Technology, Singapore, Republic of Singapore, 23–25 May 2015; Volume 84, pp. 123–127. [Google Scholar] [CrossRef]
- Marosz, M.; Wójcik, R.; Biernacik, D.; Jakusik, E.; Pilarski, M.; Owczarek, M.; Miętus, M. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu Klimat (Poland’s climate variability 1951–2008. KLIMAT project’s results). Pr. I Stud. Geogr. 2011, 47, 51–66. [Google Scholar]
- Brázdil, R.; Zahradníček, P.; Pišoft, P.; Štěpánek, P.; Bělínová, M.; Dobrovolný, P. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor. Appl. Clim. 2012, 110, 17–34. [Google Scholar] [CrossRef]
- Łupikasza, E.; Niedźwiedź, T.; Pinskwar, I.; Ruiz-Villanueva, V.; Kundzewicz, Z.W. Observed Changes in Air Temperature and Precipitation and Relationship between them. In the Upper Vistula Basin; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Łupikasza, E.; Małarzewski, Ł. Precipitation Change. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar]
- Błażejczyk, K. Sezonowa i wieloletnia zmienność niektórych elementów klimatu w Tatrach i Karkonoszach w latach 1951–2015 (Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts over the 1951–2015 period). Przegl. Geogr. 2019, 91, 41–62. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z. Observed changes in precipitation totals in Poland. Geografie 2019, 124, 237–264. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Clim. 2018, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, A.; Sikorska-Senoner, A.E.; Ranzi, R.; Banasik, K. Long-Term Changes of Hydrological Variables in a Small Lowland Watershed in Central Poland. Water 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Řehoř, J.; Trnka, M.; Lhotka, O.; Štěpánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Brázdil, R.; Chromá, K.; Dobrovolný, P.; Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Clim. 2008, 29, 223–242. [Google Scholar] [CrossRef]
- Szwed, M. Variability of precipitation in Poland under climate change. Theor. Appl. Clim. 2018, 135, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Rulfová, Z.; Kyselý, J. Trends of Convective and Stratiform Precipitation in the Czech Republic, 1982–2010. Adv. Meteorol. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beranová, R.; Kyselý, J. Trends of precipitation characteristics in the Czech Republic over 1961-2012, their spatial patterns and links to temperature and the North Atlantic Oscillation. Int. J. Clim. 2017, 38, e596–e606. [Google Scholar] [CrossRef]
- Franke, J.; Goldberg, V.; Eichelmann, U.; Freydank, E.; Bernhofer, C. Statistical analysis of regional climate trends in Saxony, Germany. Clim. Res. 2004, 27, 145–150. [Google Scholar] [CrossRef]
- Hansel, S.; Matschullat, J. Precipitation variability and changes in Saxony between 1901 and 2012. In Environmental Changes and Adaptation Strategies; Šiška, B., Ed.; Slovenská bioklimatologická spoločnosť, Česká bioklimatologická společnost: Skalica, Slovakia, 11 September 2013. [Google Scholar]
- Lünich, K.; Pluntke, T.; Prasser, M. (Eds.) Lausitzer Neiße-Charakteristik und Klima der Region (Lusatian Neisse–Characteristics and Climate of the Region); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 75. [Google Scholar]
- Pluntke, T.; Schwarzak, S.; Kuhn, K.; Lünich, K.; Adynkiewicz-Piragas, M.; Otop, I.; Miszuk, B. Climate analysis as a basis for a sustainable water management at the Lusatian Neisse. Meteorol. Hydrol. Water Manag. 2016, 4, 3–11. [Google Scholar] [CrossRef]
- Miszuk, B. Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation. Atmosphere 2022, 13, 720. [Google Scholar] [CrossRef]
- Kożuchowski, K.; Degirmendžić, J. Contemporary changes of climate in Poland: Trends and variation in thermal and solar conditions related to plant vegetation. Pol. J. Ecol. 2005, 53, 283–297. [Google Scholar]
- Okoniewska, M.; Szumińska, D. Changes in Potential Evaporation in the Years 1952–2018 in North-Western Poland in Terms of the Impact of Climatic Changes on Hydrological and Hydrochemical Conditions. Water 2020, 12, 877. [Google Scholar] [CrossRef] [Green Version]
- Poznikova, G. The Drought Indication Based on the Ratio between Potential Evapotranspiration and Precipitation at Different Sites in the Czech Republic over the Last 50 Years. In Environmental Changes and Adaptation Strategies; Šiška, B., Ed.; Slovenská bioklimatologická spoločnosť, Česká bioklimatologická společnost: Skalica, Slovakia, 2013. [Google Scholar]
- Košková, R.; NĚMEČKOVÁ, S. Assessment of evapotranspiration simulations in the Malše basin. Soil Water Res. 2009, 4, S111–S122. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U. Czasowa zmienność i przestrzenne zróżnicowanie ewapotranspiracji w zlewni nizinnej rzeki Łasicy (Spatial-temporal patterns of evapotranspiration in the Łasica catchment). Pactr. Stud. Geogr. 2021, 66, 35–46. [Google Scholar] [CrossRef]
- Mozny, M.; Trnka, M.; Vlach, V.; Vizina, A.; Potopova, V.; Zahradnicek, P.; Stepanek, P.; Hajkova, L.; Staponites, L.; Zalud, Z. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020, 590, 125390. [Google Scholar] [CrossRef]
- Somorowska, U. Changes in Terrestrial Evaporation across Poland over the Past Four Decades Dominated by Increases in Summer Months. Resources 2022, 11, 6. [Google Scholar] [CrossRef]
- Remrová, M.; Císlerová, M. Analysis of climate change effects on evapotranspiration in the watershed Uhlířská in the Jizera Mountains. Soil Water Res. 2010, 5, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Bogawski, P.; Bednorz, E. Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef] [Green Version]
- Struzik, P.; Kepinska-Kasprzak, M. Use of conventional and satellite data for estimation of evapotranspiration spatial and temporal pattern. Meteorol. Hydrol. Water Manag. 2016, 4, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S. Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Rannov, S., Neubert, M., Eds.; Spring: Cham, Switzerland, 2014; Volume 58, pp. 31–43. [Google Scholar]
- Radzka, E. Klimatyczny bilans wodny okresu wegetacyjnego (według wzoru Iwanowa) w środkowowschodniej Polsce (Climatic Water Balance for the Vegetation Season (according to Iwanow’s equation) in Central-Eastern Poland). Water-Environ.-Rural. Areas 2014, 14, 67–76. [Google Scholar]
- Szwed, M. The Elements of Water Balance in the Changing Climate in Poland. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Bryś, K.; Bryś, T. Ekstremalne wartości klimatycznych bilansów wodnych we Wrocławiu-Swojcu (Extreme values of climatic water balances in Wrocław-Swojec). Water-Environ.-Rural. Areas 2005, 2, 11–29. [Google Scholar]
- Ziernicka-Wojtaszek, A. Klimatyczny bilans wodny na obszarze Polski w świetle współczesnych zmian klimatu (Climatic Water Balance in Poland in the light of the present day climate changes). Water-Environ.-Rural. Areas 2015, 4, 93–100. [Google Scholar]
- Kasperska-Wołowicz, W.; Łabędzki, L. Climatic and agricultural water balance for grasslands in Poland using the Penman-Monteith method. Annals of Warsaw Agricultural University–SGGW. Land Reclam. 2006, 37, 93–100. [Google Scholar]
- Kołodziej, J. Kształtowanie się klimatycznego bilansu wodnego na terenie Polski w latach 1981-2000 (Forming of climatic water balance in Poland in the years 1981-2000). Infrastruct. Ecol. Rural. Areas 2008, 5, 85–97. [Google Scholar]
- Pivec, J.; Brant, V.; Moravec, D. Analysis of the potential evapotranspiration demands in the Czech Republic between 1961–1990. Biologia 2006, 61, S294–S299. [Google Scholar] [CrossRef] [Green Version]
- Urban, G.; Kuchar, L.; Kępińska-Kasprzak, M.; Łaszyca, E.Z. A Climatic Water Balance Variability during the Growing Season in Poland in the Context of Modern Climate Change. Meteorol. Z 2022. Available online: https://www.schweizerbart.de/papers/metz/detail/prepub/101803/ (accessed on 29 September 2022). [CrossRef]
- Kuźniar, A.; Twardy, S.; Kowalczyk, A.; Kostuch, M. An assessment of the water requirements of a mountain pasture sward in the Polish Western Carpathians. J. Water Land Dev. 2011, 15, 193–208. [Google Scholar] [CrossRef]
- Hlasny, T.; Balaz, P. The climatic water balance of Slovakia based on the FAO Penman-Monteith potential evapotranspiration. Geogr Cas. 2008, 60, 15–30. [Google Scholar]
- Der Geoportal, B.F.G. Mean Annual Climatic Water Balance. Available online: https://geoportal.bafg.de/dokumente/had/214ClimaticWaterBalance.pdf (accessed on 15 September 2022).
- Durło, G.B. Climatic Water Balance for vegetation periods in Western Beskid Mountains. Acta Agrophys. 2007, 10, 553–562. [Google Scholar]
- Durło, G.B. Climatic water balance in the Góry Opawskie Landscape Park. Sylwan 2019, 163, 802–810. [Google Scholar] [CrossRef]
- Kowanetz, L. On the method of determining the climatic water balance in mountainous area, with an example from the Polish Carpathians. Pr. Geogr. 2000, 105, 137–164. [Google Scholar]
- Hoy, A.; Feske, N.; Štěpánek, P.; Skalák, P.; Schmitt, A.; Schneider, P. Climatic Changes and Their Relation to Weather Types in a Transboundary Mountainous Region in Central Europe. Sustainability 2018, 10, 2049. [Google Scholar] [CrossRef] [Green Version]
- Šípek, V. The influence of large-scale climatic patterns on precipitation, temperature, and discharge in Czech river basins. J. Hydrol. Hydromech. 2013, 61, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Řehoř, J.; Brázdil, R.; Lhotka, O.; Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P. Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere 2021, 12, 1536. [Google Scholar] [CrossRef]
- Degirmendžić, J.; Kożuchowski, K.; Żmudzka, E. Changes of air temperature and precipitation in Poland in the period 1951-2000 and their relationship to atmospheric circulation. Int. J. Clim. 2004, 24, 291–310. [Google Scholar] [CrossRef]
- van Ulden, A.P.; van Oldenborgh, G.J. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos. Chem. Phys. 2006, 6, 863–881. [Google Scholar] [CrossRef] [Green Version]
- Lupikasza, E. Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Phys. Chem. Earth 2010, 35, 448–455. [Google Scholar] [CrossRef]
- Twardosz, R.; Niedźwiedź, T.; Łupikasza, E. The influence of atmospheric circulation on the type of precipitation (Kraków, southern Poland). Theor. Appl. Clim. 2010, 104, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Twardosz, R.; Niedźwiedź, T.; Łupikasza, E. Temporal Variability in the Form and Type of Precipitation Kraków in Relation to Circulation Patterns; Jagiellonian University: Kraków, Poland, 2011; p. 177. [Google Scholar]
- Niedźwiedź, T.; Twardosz, R.; Walanus, A. Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theor. Appl. Clim. 2009, 98, 337–350. [Google Scholar] [CrossRef]
- Hoy, A.; Schucknecht, A.; Sepp, M.; Matschullat, J. Large-scale synoptic types and their impact on European precipitation. Theor. Appl. Clim. 2013, 116, 19–35. [Google Scholar] [CrossRef]
- Nowosad, M.; Stach, A. Relation between extensive extreme precipitation in Poland and atmospheric circulation. Quaest. Geogr. 2014, 33, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Wibig, J.; Piotrowski, P. Impact of the air temperature and atmospheric circulation on extreme precipitation in Poland. Int. J. Clim. 2018, 38, 4533–4549. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Kyselý, J. Climate change scenarios of convective and large-scale precipitation in the Czech Republic based on EURO-CORDEX data. Int. J. Clim. 2016, 37, 2451–2465. [Google Scholar] [CrossRef]
- Zahradníček, P.; Brázdil, R.; Řehoř, J.; Lhotka, O.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Temperature extremes and circulation types in the Czech Republic, 1961–2020. Int. J. Clim. 2022, 42, 4808–4829. [Google Scholar] [CrossRef]
- Cahynová, M.; Huth, R. Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theor. Appl. Clim. 2009, 96, 57–68. [Google Scholar] [CrossRef]
- Tomczyk, A.M. Thermal Conditions Relative to Atmospheric Circulation in the Christmas Period in Poland. Quaest. Geogr. 2016, 35, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Matuszko, D. The influence of atmospheric circulation over Central Europe on the long-term variability of sunshine duration and air temperature in Poland. Atmos. Res. 2020, 251, 105427. [Google Scholar] [CrossRef]
- Urban, G.; Migała, K.; Pawliczek, P. Sunshine duration and its variability in the main ridge of the Karkonosze Mountains in relation to with atmospheric circulation. Theor. Appl. Clim. 2017, 131, 1173–1189. [Google Scholar] [CrossRef] [Green Version]
- Araźny, A.; Bartczak, A.; Maszewski, R.; Krzemiński, M. The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954–2018. Theor. Appl. Clim. 2021, 146, 1079–1095. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Plavcová, E. Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere 2021, 12, 87. [Google Scholar] [CrossRef]
- Wypych, A.; Czekierda, D.; Rösler, A.; Chmal, M.; Chmal, T. Air humidity and evaporation conditions in Poland in relation to atmospheric circulation patterns. Aerul Şi Apa Compon. Ale Mediu. 2013, 2013, 103–110. [Google Scholar]
- Bartczak, A.; Araźny, A.; Krzemiński, M.; Maszewski, R. Hydrological Dry Periods versus Atmospheric Circulations in the Lower Vistula Basin (Poland) in 1954–2018. Quaest. Geogr. 2022, 41, 107–125. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Trnka, M.; Lhotka, O.; Balek, J.; Možný, M.; Štěpánek, P.; Zahradníček, P.; Mikulová, K.; Turňa, M. Soil drought and circulation types in a longitudinal transect over central Europe. Int. J. Clim. 2020, 41, E2834–E2850. [Google Scholar] [CrossRef]
- Bednorz, E.; Wrzesiński, D.; Tomczyk, A.M.; Jasik, D. Classification of Synoptic Conditions of Summer Floods in Polish Sudeten Mountains. Water 2019, 11, 1450. [Google Scholar] [CrossRef] [Green Version]
- Miszuk, B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere 2021, 12, 163. [Google Scholar] [CrossRef]
- Szyga-Pluta, K. Variation of cloudiness in the mountain region on the example of the Sudetes. Bad. Fizjogr. Ser. A Geogr. Fiz. 2017, A68, 205–221. [Google Scholar] [CrossRef]
- Migała, K.; Urban, G.; Tomczyński, K. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation. Theor. Appl. Clim. 2015, 125, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Ojrzyńska, H.; Bilińska, D.; Werner, M.; Kryza, M.; Malkiewicz, M. The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in Wrocław, Poland. Aerobiologia 2020, 36, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Bryś, K.; Bryś, T. Multi-annual variability of global solar radiation in the agricultural part of Lower Silesia (SW Poland) and its relationship to the North Atlantic Oscillation. Meteorol. Hydrol. Water Manag. 2019, 7, 13–25. [Google Scholar] [CrossRef]
- Visbeck, M.H.; Hurrell, J.W.; Polvani, L.; Cullen, H.M. The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA 2001, 98, 12876–12877. [Google Scholar] [CrossRef] [Green Version]
- Rousi, E.; Selten, F.; Rahmstorf, S.; Coumou, D. Changes in North Atlantic Atmospheric Circulation in a Warmer Climate Favor Winter Flooding and Summer Drought over Europe. J. Clim. 2021, 34, 2277–2295. [Google Scholar] [CrossRef]
- Kyselý, J.; Huth, R. Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor. Appl. Clim. 2005, 85, 19–36. [Google Scholar] [CrossRef]
- Bartoszek, K. The main characteristics of atmospheric circulation over East-Central Europe from 1871 to 2010. Meteorol. Atmos. Phys. 2016, 129, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Niedźwiedż, T.; Ustrnul, Z. Change of Atmospheric Circulation. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 123–150. [Google Scholar]
- Lityński, J. Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski (A numerical classification of circulation types and weather types for Poland). Pr. PIHM 1969, 97, 3–14. [Google Scholar]
- Pianko-Kluczyńska, K. Nowy kalendarz typów cyrkulacji atmosfery według J. Lityńskiego (New calendar of atmosphere circulation types according to J. Lityński). Wiadomości Meteorol. Hydrol. Gospod. Wodnej 2007, I, 65–85. [Google Scholar]
- Nowosad, M. Kalendarz Wskaźników Cyrkulacji i Typów Cyrkulacji nad Polską Według Formuły Lityńskiego. Zbiór Komputerowy (Calendar of Circulation Indicators and Circulation Types over Poland according to the Lityński Formula. Digital Collection); Department of Meteorology and Climatology, Maria Curie Skłodowska University: Lublin, Poland, 2017. [Google Scholar]
- Kulesza, K. Nowe spojrzenie na klasyfikację typów cyrkulacji atmosfery J. Lityńskiego (New look on the classification of atmospheric circulation types by J. Lityński). Pr. Geogr. 2017, 150, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Kulesza, K. Modified, threshold-based circulation type classification for Central Europe, on the basis of Lityński’s classification. Misc. Geogr.-Reg. Stud. Dev. 2019, 23, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Kossowska-Cezak, U.; Twardosz, R. Uwarunkowania cyrkulacyjne temperatury powietrza w Warszawie w miesiącach o skrajnych wartościach wskaźnika NAO (1951-2015) (Impact of atmospheric circulation on air temperaturę in Warsaw during months with extreme values of the NAO index (1951–2015)). Pr. Geogr. 2018, 153, 69–87. [Google Scholar] [CrossRef]
- Wiątek, M. Uwarunkowania cyrkulacyjne występowania ciepłych miesięcy zimowych na obszarze Pobrzeży Południowobałtyckich (Circulation conditions of the occurrence of warm winter months in the southern Baltic coast). Pr. Geogr. 2014, 139, 43–56. [Google Scholar] [CrossRef]
- Pianko-Kluczyńska, K. Związek między cyrkulacją atmosferyczną według Lityńskiego i sezonowymi opadami w Polsce (The relationship between atmospheric circulation by Lityński and seasonal rainfall in Poland). Prz. Nauk. Inż. Kszt. Środ. 2015, 68, 67–177. [Google Scholar]
- Nowosad, M.; Rodzik, B.; Wereski, S.; Dobek, M. The UTCI Index in Lesko and Lublin and its circulation determinants. Geogr. Pol. 2013, 86, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Szyga-Pluta, K. Typy cyrkulacji atmosfery a rodzaje chmur w Poznaniu (Atmosphere circulation categories and the clouds types in Poznań). Bad. Fizjogr. Pol. Zach. Ser. A 2009, 60, 133–145. [Google Scholar] [CrossRef]
- Hänsel, S.; Matschullat, J. Monthly trends of daily heavy precipitation indicators from lowland to mountainous regions in Saxony, Germany. In Proceedings of the Conference: Sustainable Development and Bioclimate, Stará Lesna, Slovakia, 5–9 October 2009. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Clim. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- ETo Calculator. Available online: https://www.fao.org/land-water/databases-and-software/eto-calculator/en/ (accessed on 27 September 2022).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. FAO. 1998. Available online: https://www.fao.org/3/X0490E/X0490E00.htm (accessed on 27 September 2022).
- Kaszewski, B. Wykorzystanie Typologii Cyrkulacji Atmosfery w Badaniach Klimatologicznych (The Use of Typology of Atmospheric Circulation in Climatological Research); Rocznik fizyczno-geograficzny: Uniwersytet Gdański, Poland, 2001; Volume VI, pp. 13–26. [Google Scholar]
- Nowosad, M. O problemach związanych z wyznaczaniem typów cyrkulacji Lityńskiego (Problems related to the determination of Litynski atmospheric circulation types). Przegl. Geogr. 2019, 159, 49–66. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/ NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Pianko-Kluczyńska, K. (IMGW-PIB, Warsaw, Poland); Ustrnul, Z. (IMGW-PIB, Cracow, Poland). Calendar of the circulation conditions, according to the Lityński classification, 2022. Unpublished work. Obtained directly from the authors.
- Błaś, M.; Sobik, M. Osobliwości klimatu Karkonoszy i Gór Izerskich (Climatic peculiarities of the Izera and Giant Mountains (Western Sudetes)). In Rola Stacji Terenowych w Badaniach Geograficznych; Bokwa, A., Ed.; IGiGP UJ: Kraków, Poland, 2005; pp. 109–121. [Google Scholar]
- Kwiatkowski, J. Opady rzeczywiste w Sudetach (Actual precipitations in the Sudetes Mountains). Przegl. Geofiz. 1978, 23, 35–44. [Google Scholar]
- Kostecki, S.; Banasiak, R. The Catastrophe of the Niedów Dam—The Causes of the Dam’s Breach, Its Development, and Consequences. Water 2021, 13, 3254. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Smarzyńska, K. Spatio-Temporal Variability and Trends of Penman-Monteith Reference Evapotranspiration (FAO-56) in 1971-2010 under Climatic Conditions of Poland. Pol. J. Environ. Stud. 2014, 23, 2083–2091. [Google Scholar] [CrossRef] [Green Version]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Air Temperature Change. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 275–330. [Google Scholar]
- Brieber, A.; Hoy, A. Statistical analysis of very high-resolution precipitation data and relation to atmospheric circulation in Central Germany. Adv. Sci. Res. 2019, 16, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Szwed, M. Projections of changes of areal evapotranspiration for different land-use units in the Wielkopolska Region (Poland). Theor. Appl. Clim. 2016, 130, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Mazurski, R.M. The Destruction in Forests in the Polish Sudetes Mountains by Industrial Emissions. For. Ecol. Manag. 1986, 17, 301–315. [Google Scholar] [CrossRef]
- Bałazy, R.; Ciesielski, M.; Waraksa, P.; Zasada, M.; Zawiła-Niedźwiecki, T. Deforestation Processes in the Polish Mountains in the Context of Terrain Topography. Forests 2019, 10, 1027. [Google Scholar] [CrossRef] [Green Version]
- Urban, G. Zaleganie pokrywy śnieżnej i jego zmienność w polskiej części Sudetów i na ich przedpolu (Duration of snow cover and its variability in the Polish part of the Sudetes Mts. and their foreland). Przegl. Geogr. 2015, 87, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Urban, G. Snow cover and its variability in the Polish Sudetes Mts. and the Sudetic Foreland. Geografie 2016, 121, 32–53. [Google Scholar] [CrossRef] [Green Version]
Station | Abbreviation | Location | Altitude [m] |
---|---|---|---|
Wrocław | WR | Poland | 120 |
Legnica | LE | Poland | 122 |
Hradec Králové | HK | Czechia | 278 |
Jelenia Góra | JG | Poland | 342 |
Kłodzko | KL | Poland | 356 |
Hejnice | HE | Czechia | 396 |
Liberec | LB | Czechia | 398 |
Ústí nad Orlicí | US | Czechia | 402 |
Luka | LU | Czechia | 510 |
Světlá Hora | SH | Czechia | 593 |
Červená | CE | Czechia | 748 |
Desná-Souš | DS | Czechia | 772 |
Śnieżka | ŚN | Poland | 1603 |
Station | Tmax | T | Tmin | U | v | SD |
---|---|---|---|---|---|---|
WR | 21.2 | 15.6 | 10.2 | 74 | 2.8 | 1244 |
LE | 21.1 | 15.5 | 10.1 | 75 | 3.1 | 1204 |
HK | 21.5 | 15.8 | 10.5 | 71 | 2.6 | 1217 |
JG | 19.8 | 13.8 | 7.9 | 78 | 2.0 | 1131 |
KL | 19.6 | 14.0 | 8.8 | 78 | 2.2 | 1166 |
HE | 19.9 | 14.3 | 9.6 | 75 | 2.1 | 1043 |
LB | 19.5 | 14.0 | 9.1 | 74 | 2.7 | 1080 |
US | 20.2 | 14.5 | 9.1 | 74 | 2.9 | 1170 |
LU | 19.3 | 14.4 | 10.1 | 72 | 3.9 | 1208 |
SH | 18.7 | 12.7 | 6.7 | 83 | 1.9 | 1087 |
CE | 17.2 | 12.8 | 9.2 | 76 | 3.5 | 1164 |
DS | 16.6 | 11.6 | 7.4 | 81 | 2.6 | 1052 |
ŚN | 9.2 | 6.4 | 4.2 | 88 | 10.3 | 923 |
Station | Max | Year | Min | Year |
---|---|---|---|---|
WR | 31.5 | 2020 | −417.6 | 2015 |
LE | 50.1 | 2001 | −421.2 | 2018 |
HK | 39.7 | 1987 | −485.9 | 2018 |
JG | 263.2 | 1997 | −308.1 | 2018 |
KL | 171.7 | 2020 | −358.8 | 2015 |
HE | 592.0 | 2010 | −290.7 | 2018 |
LB | 425.2 | 2010 | −386.7 | 2018 |
US | 291.0 | 2020 | −346.4 | 2018 |
LU | 39.8 | 2010 | −411.8 | 2018 |
SH | 153.6 | 2020 | −254.2 | 2015 |
CE | 189.4 | 1997 | −260.9 | 1992 |
DS | 602.8 | 1981 | −115.3 | 2018 |
ŚN | 555.8 | 1981 | −29.0 | 2003 |
Station | RR | Ep | CWB |
---|---|---|---|
WR | 12.9 | 27.7 | −14.8 |
LE | 11.9 | 22.6 | −10.7 |
HK | −3.1 | 19.9 | −23.0 |
JG | 18.8 | 23.8 | −5.0 |
KL | 18.4 | 17.1 | 1.4 |
HE | 14.5 | 8.9 | 5.6 |
LB | 12.3 | 18.3 | −6.1 |
US | 16.9 | 12.1 | 4.8 |
LU | 4.1 | 23.6 | −19.5 |
SH | −5.8 | 8.3 | −14.0 |
CE | 5.8 | 16.6 | −10.8 |
DS | −0.3 | −0.1 | −0.2 |
ŚN | −0.1 | 18.3 | −18.4 |
Station | U [% per Decade] | SD [Hours per Decade] |
---|---|---|
WR | −1.3 | 84.1 |
LE | −1.2 | 83.6 |
HK | −0.8 | 43.2 |
JG | −0.4 | 107.5 |
KL | −0.7 | 40.1 |
HE | −1.0 | 29.8 |
LB | −1.7 | 42.1 |
US | −0.3 | 31.8 |
LU | −1.0 | 22.3 |
SH | −2.1 | 2.5 |
CE | −0.4 | 4.9 |
DS | −0.1 | −20.0 |
ŚN | −0.9 | 52.2 |
Change | Anticyclonic | Cyclonic | Transitional | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|---|---|---|
(days/ decade) | −1.30 | 0.47 | 0.83 | −0.34 | −0.73 | −0.75 | 4.02 | −0.36 |
Vorticity Types | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|
Anticyclonic | −1.52 | 0.20 | −0.60 | 0.72 | −0.25 |
Cyclonic | 1.44 | −0.81 | 0.02 | 1.54 | −0.23 |
Transitional | −0.25 | −0.11 | −0.17 | 1.76 | 0.12 |
Station | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|
WR | −57.0 | −81.2 | −86.6 | −38.7 | −22.2 |
LE | −58.8 | −76.8 | −96.1 | −35.4 | −21.7 |
HK | −67.7 | −67.6 | −76.2 | −53.3 | −24.5 |
JG | 20.6 | −33.8 | −41.3 | 12.7 | 0.0 |
KL | −16.7 | −43.0 | −57.3 | 4.0 | −13.0 |
HE | 81.4 | −5.7 | 9.2 | 51.6 | 12.2 |
LB | 0.6 | −28.9 | −27.4 | −5.0 | −8.6 |
US | −25.9 | −40.8 | −43.9 | −19.9 | −10.0 |
LU | −58.8 | −64.8 | −77.9 | −25.8 | −19.0 |
SH | −6.1 | −13.1 | −22.3 | 16.1 | −8.8 |
CE | 4.6 | −27.0 | −24.3 | 18.1 | −11.8 |
DS | 125.6 | 42.1 | 92.9 | 42.2 | 16.5 |
ŚN | 130.0 | 57.7 | 65.9 | 105.9 | 21.9 |
Station | Anticyclonic | Cyclonic | Transitional | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|---|---|---|
WR | −0.11 | 6.10 | 6.87 | 9.97 | −4.28 | −3.39 | 0.39 | 1.02 |
LE | −0.26 | 7.75 | 4.44 | 11.29 | −3.17 | −4.67 | 0.46 | 1.30 |
HK | −4.41 | 0.59 | 0.78 | 3.13 | −11.04 | −4.30 | 0.25 | −2.54 |
JG | −1.67 | 10.32 | 10.16 | 7.98 | 0.68 | −1.78 | 0.40 | 0.44 |
KL | 1.27 | 10.51 | 6.67 | 10.53 | −0.49 | −5.52 | 0.39 | −0.04 |
HE | 0.18 | 11.94 | 2.40 | 11.93 | −4.02 | −13.27 | 0.39 | −1.18 |
LB | 2.45 | 4.00 | 5.83 | 6.69 | −3.15 | −9.90 | 0.35 | 1.46 |
US | 6.66 | 2.74 | 7.52 | 7.77 | −5.19 | −2.37 | 0.45 | 3.69 |
LU | 3.22 | −5.24 | 6.09 | 9.71 | −9.81 | −4.52 | 0.28 | 1.82 |
SH | 0.86 | −8.02 | 1.37 | 4.96 | −14.75 | −12.32 | 0.31 | 0.09 |
CE | 5.02 | −3.01 | 3.75 | 15.51 | −17.39 | −6.06 | 0.38 | 1.28 |
DS | 1.96 | −0.87 | −1.38 | 9.87 | −8.27 | −15.12 | 0.40 | −1.18 |
ŚN | −5.30 | 4.79 | 0.41 | −4.05 | 1.19 | 5.06 | 0.21 | −2.18 |
Station | Anticyclonic | Cyclonic | Transitional | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|---|---|---|
WR | 5.89 | 11.42 | 10.36 | 0.32 | 7.16 | 9.00 | 15.22 | 3.14 |
LE | 3.82 | 10.14 | 8.64 | 0.26 | 5.77 | 6.74 | 13.54 | 2.69 |
HK | 3.43 | 7.71 | 8.81 | 0.23 | 4.75 | 6.37 | 13.15 | 2.37 |
JG | 4.95 | 9.60 | 9.30 | 0.36 | 5.88 | 7.97 | 12.88 | 2.97 |
KL | 1.92 | 8.07 | 7.10 | 0.25 | 4.20 | 5.47 | 11.17 | 1.79 |
HE | −1.41 | 5.14 | 5.17 | 0.14 | 0.46 | 1.90 | 9.12 | 1.58 |
LB | 0.86 | 9.50 | 7.98 | 0.25 | 3.82 | 6.04 | 11.73 | 2.12 |
US | −0.39 | 6.34 | 6.19 | 0.16 | 2.41 | 3.66 | 10.16 | 1.26 |
LU | 5.33 | 9.07 | 9.17 | 0.24 | 7.29 | 7.85 | 14.12 | 2.23 |
SH | −2.03 | 5.88 | 4.40 | 0.12 | 2.20 | 2.56 | 8.50 | 0.56 |
CE | 1.35 | 7.68 | 7.57 | 0.16 | 5.96 | 6.26 | 10.54 | 1.62 |
DS | −8.01 | 4.59 | 3.31 | −0.02 | −1.33 | −0.28 | 5.11 | 0.26 |
ŚN | 2.52 | 7.40 | 8.37 | 0.25 | 6.77 | 7.22 | 8.19 | 2.33 |
Station | Anticyclonic | Cyclonic | Transitional | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|---|---|---|
WR | −6.00 | −5.32 | −3.49 | 0.87 | −11.44 | −12.39 | 10.22 | −2.12 |
LE | −4.08 | −2.39 | −4.19 | 3.56 | −8.94 | −11.42 | 11.43 | −1.39 |
HK | −7.84 | −7.13 | −8.03 | −3.31 | −15.78 | −10.67 | −0.77 | −4.92 |
JG | −6.62 | 0.73 | 0.86 | −0.55 | −5.20 | −9.75 | 17.80 | −2.53 |
KL | −0.65 | 2.44 | −0.43 | 4.79 | −4.69 | −10.99 | 14.30 | −1.83 |
HE | 1.59 | 6.80 | −2.76 | 8.74 | −4.49 | −15.17 | 33.72 | −2.76 |
LB | 1.59 | −5.50 | −2.15 | −0.09 | −6.97 | −15.94 | 19.71 | −0.66 |
US | 7.05 | −3.60 | 1.33 | 3.59 | −7.61 | −6.02 | 16.71 | 2.44 |
LU | −2.11 | −14.31 | −3.08 | 2.13 | −17.10 | −12.36 | 0.22 | −0.41 |
SH | 2.89 | −13.89 | −3.03 | 2.52 | −16.95 | −14.88 | 8.47 | −0.47 |
CE | 3.67 | −10.69 | −3.82 | 11.33 | −23.36 | −12.32 | 15.63 | −0.34 |
DS | 9.97 | −5.46 | −4.69 | 10.42 | −6.93 | −14.85 | 27.91 | −1.44 |
ŚN | −7.83 | −2.61 | −7.96 | −8.64 | −5.58 | −2.16 | 5.94 | −4.51 |
Station | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|
WR | −0.75 | −4.96 | −1.80 | 1.04 | −3.44 |
LE | −0.84 | −1.82 | −2.80 | 1.51 | −1.77 |
HK | −0.58 | −5.25 | −4.40 | 0.11 | −3.56 |
JG | −2.57 | −1.85 | −2.82 | −0.27 | −2.52 |
KL | 1.04 | −4.45 | −2.18 | 3.45 | −1.97 |
HE | 1.54 | 1.42 | −2.02 | 4.38 | −2.52 |
LB | −0.05 | 0.28 | −2.43 | 3.83 | −0.62 |
US | 3.04 | −2.71 | −1.27 | 6.13 | 1.18 |
LU | 1.91 | −5.97 | −4.57 | 2.77 | 0.17 |
SH | 4.23 | −4.97 | −1.12 | 2.49 | −0.03 |
CE | 5.25 | −3.33 | −1.87 | 4.99 | −0.24 |
DS | 5.07 | 3.67 | −1.34 | 9.10 | −0.84 |
ŚN | −4.80 | −3.21 | −2.71 | −3.00 | 0.36 |
Station | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|
WR | 2.69 | −3.91 | −5.10 | 8.20 | −0.11 |
LE | 3.93 | −2.14 | −6.04 | 10.51 | −0.23 |
HK | −0.63 | −4.64 | −5.25 | 2.24 | −0.59 |
JG | 3.79 | −2.45 | −3.38 | 14.60 | −0.88 |
KL | 5.32 | −0.58 | −5.38 | 9.47 | −0.78 |
HE | 13.07 | −4.51 | −7.86 | 27.00 | −0.97 |
LB | 3.67 | −5.20 | −8.58 | 13.50 | −0.51 |
US | 2.44 | −3.39 | −3.35 | 8.39 | −2.60 |
LU | 4.35 | −10.53 | −5.11 | −1.18 | −2.58 |
SH | 1.65 | −7.83 | −8.59 | 1.06 | −1.54 |
CE | 8.18 | −12.98 | −8.61 | 7.44 | −1.36 |
DS | 10.34 | −9.29 | −8.39 | 18.14 | −2.47 |
ŚN | 5.48 | −0.18 | 1.45 | 10.86 | −4.81 |
Station | N-Types (N, NE, NW) | S-Types (S, SE, SW) | W-Types (W, NW, SW) | E-Types (E, NE, SE) | 0-Type |
---|---|---|---|---|---|
WR | −1.08 | −2.57 | −5.48 | 0.98 | 1.43 |
LE | 0.46 | −4.98 | −2.58 | −0.59 | 0.61 |
HK | −2.10 | −5.90 | −1.03 | −3.12 | −0.77 |
JG | −1.76 | −0.90 | −3.55 | 3.47 | 0.87 |
KL | −1.57 | 0.34 | −3.42 | 1.38 | 0.92 |
HE | −5.86 | −1.39 | −5.29 | 2.34 | 0.72 |
LB | −3.72 | −2.05 | −4.93 | 2.37 | 0.47 |
US | −1.90 | −1.51 | −1.41 | 2.18 | 3.86 |
LU | −4.13 | −0.60 | −2.69 | −1.36 | 2.00 |
SH | −3.35 | −4.15 | −5.16 | 4.91 | 1.09 |
CE | −2.10 | −7.05 | −1.84 | 3.19 | 1.27 |
DS | −4.99 | −1.32 | −5.12 | 0.66 | 1.87 |
ŚN | −9.32 | −2.19 | −0.90 | −1.91 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszuk, B. Climate Water Balance in the Warm Half-Year and Its Circulation Conditions in the Sudetes Mountains and Their Foreland (Poland and Czechia). Water 2023, 15, 795. https://doi.org/10.3390/w15040795
Miszuk B. Climate Water Balance in the Warm Half-Year and Its Circulation Conditions in the Sudetes Mountains and Their Foreland (Poland and Czechia). Water. 2023; 15(4):795. https://doi.org/10.3390/w15040795
Chicago/Turabian StyleMiszuk, Bartłomiej. 2023. "Climate Water Balance in the Warm Half-Year and Its Circulation Conditions in the Sudetes Mountains and Their Foreland (Poland and Czechia)" Water 15, no. 4: 795. https://doi.org/10.3390/w15040795
APA StyleMiszuk, B. (2023). Climate Water Balance in the Warm Half-Year and Its Circulation Conditions in the Sudetes Mountains and Their Foreland (Poland and Czechia). Water, 15(4), 795. https://doi.org/10.3390/w15040795