Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Chemical Analyses
2.4. Lake Watershed Area and Land Use Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Urban Lake Eutrophication
3.2. The Relationships between Lake Morphometry and Eutrophication
3.3. Future Perspectives for the Management of Urban Lake Water Quality
4. Conclusions
- (1)
- The majority of surveyed urban lakes exhibited poor water quality, with 92.9% being classified as eutrophic and hypereutrophic.
- (2)
- Significant differences in phytoplankton biomass were observed among these lakes, with a mean value of 23.6 mg/L and values ranging between 10 and 80 mg/L, whereas no corresponding significant differences in phytoplankton diversity were observed (p > 0.05).
- (3)
- Phytoplankton biomass was positively correlated with lake drainage ratio (R2 = 0.35). Nutrient accumulation capacity rises with the drainage ratio, thereby providing nutrients that support greater levels of phytoplankton growth in these lake ecosystems.
- (4)
- More data need to be collected in the future to establish models to predict water quality using lake morphometry, which can be beneficial to urban lake management.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reynaud, A.; Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef]
- Steinman, A.D.; Cardinale, B.J.; Munns, W.R., Jr.; Ogdahl, M.E.; Allan, J.D.; Angadi, T.; Bartlett, S.; Brauman, K.; Byappanahalli, M.; Doss, M. Ecosystem services in the Great Lakes. J. Great Lakes Res. 2017, 43, 161–168. [Google Scholar]
- Zhao, Q.; Wang, Q. Water ecosystem service quality evaluation and value assessment of Taihu Lake in China. Water 2021, 13, 618. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016, 6, 706–709. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Urbanization. Our World in Data. Available online: https://ourworldindata.org/urbanization (accessed on 1 January 2023).
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; pp. 1–123. ISBN 9789210043144. [Google Scholar]
- McGoff, E.; Solimini, A.G.; Pusch, M.T.; Jurca, T.; Sandin, L. Does lake habitat alteration and land-use pressure homogenize E uropean littoral macroinvertebrate communities? J. Appl. Ecol. 2013, 50, 1010–1018. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, Y.; Yang, K.; Chen, K.; Pan, M.; Zhou, X. Dianchi Lake watershed impervious surface area dynamics and their impact on lake water quality from 1988 to 2017. Environ. Sci. Pollut. Res. 2018, 25, 29643–29653. [Google Scholar]
- Jenny, J.-P.; Normandeau, A.; Francus, P.; Taranu, Z.E.; Gregory-Eaves, I.; Lapointe, F.; Jautzy, J.; Ojala, A.E.; Dorioz, J.-M.; Schimmelmann, A. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl. Acad. Sci. USA 2016, 113, 12655–12660. [Google Scholar]
- Lewis, W.M., Jr.; Wurtsbaugh, W.A.; Paerl, H.W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 2011, 45, 10300–10305. [Google Scholar]
- Bianchi, T.S.; DiMarco, S.; Cowan Jr, J.; Hetland, R.; Chapman, P.; Day, J.; Allison, M. The science of hypoxia in the Northern Gulf of Mexico: A review. Sci Total Env. 2010, 408, 1471–1484. [Google Scholar]
- Porter, E.M.; Bowman, W.D.; Clark, C.M.; Compton, J.E.; Pardo, L.H.; Soong, J.L. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry 2013, 114, 93–120. [Google Scholar] [CrossRef]
- Li, J.; Hansson, L.-A.; Persson, K.M. Nutrient control to prevent the occurrence of cyanobacterial blooms in a eutrophic lake in Southern Sweden, used for drinking water supply. Water 2018, 10, 919. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Wang, H.; García Molinos, J.; Heino, J.; Zhang, H.; Zhang, P.; Xu, J. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes. Environ. Int. 2021, 153, 106494. [Google Scholar] [CrossRef]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 6, 354–356. [Google Scholar] [CrossRef]
- Steele, M.; Heffernan, J. Morphological characteristics of urban water bodies: Mechanisms of change and implications for ecosystem function. Ecol. Appl. 2014, 24, 1070–1084. [Google Scholar] [CrossRef]
- Gong, X.; Ding, Q.; Jin, M.; Zhao, Z.; Zhang, L.; Yao, S.; Xue, B. Recording and response of persistent toxic substances (PTSs) in urban lake sediments to anthropogenic activities. Sci. Total Environ. 2021, 777, 145977. [Google Scholar] [CrossRef]
- Friese, K.; Schmidt, G.; de Lena, J.C.; Nalini Jr, H.A.; Zachmann, D.W. Anthropogenic influence on the degradation of an urban lake–The Pampulha reservoir in Belo Horizonte, Minas Gerais, Brazil. Limnologica 2010, 40, 114–125. [Google Scholar]
- Gkelis, S.; Papadimitriou, T.; Zaoutsos, N.; Leonardos, I. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: Evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae 2014, 39, 322–333. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef]
- Holgerson, M.A.; Raymond, P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar] [CrossRef]
- Zhou, J.; Leavitt, P.R.; Zhang, Y.; Qin, B. Anthropogenic eutrophication of shallow lakes: Is it occasional? Water Res. 2022, 221, 118728. [Google Scholar] [CrossRef]
- Staehr, P.A.; Baastrup-Spohr, L.; Sand-Jensen, K.; Stedmon, C. Lake metabolism scales with lake morphometry and catchment conditions. Aquat. Sci. 2012, 74, 155–169. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G.; Kratz, T.K. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol. Appl. 1999, 9, 1377–1390. [Google Scholar] [CrossRef]
- Rasmussen, J.B.; Godbout, L.; Schallenberg, M. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 1989, 34, 1336–1343. [Google Scholar] [CrossRef]
- Cremona, F.; Laas, A.; Hanson, P.C.; Sepp, M.; Nõges, P.; Nõges, T. Drainage ratio as a strong predictor of allochthonous carbon budget in hemiboreal lakes. Ecosystems 2019, 22, 805–817. [Google Scholar] [CrossRef]
- Liu, H.; He, B.; Zhou, Y.; Yang, X.; Zhang, X.; Xiao, F.; Feng, Q.; Liang, S.; Zhou, X.; Fu, C. Eutrophication monitoring of lakes in Wuhan based on Sentinel-2 data. GIScience Remote Sens. 2021, 58, 776–798. [Google Scholar] [CrossRef]
- State Environment Protection Bureau of China. The Monitoring Analysis Method of Water and Wastewater; China Environmental Science Press: Beijing, China, 2002.
- Pan, G.; Dai, L.; Li, L.; He, L.; Li, H.; Bi, L.; Gulati, R.D. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ. Sci. Technol. 2012, 46, 5077–5084. [Google Scholar]
- Hu, H.; Yinxin, W. The Freshwater Algae of China: Systematics, Taxonomy and Ecology; Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Urrutia-Cordero, P.; Ekvall, M.K.; Ratcovich, J.; Soares, M.; Wilken, S.; Zhang, H.; Hansson, L.A. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 2017, 62, 1869–1878. [Google Scholar] [CrossRef]
- Goebel, N.; Edwards, C.; Zehr, J.; Follows, M.; Morgan, S. Modeled phytoplankton diversity and productivity in the California Current System. Ecol. Model. 2013, 264, 37–47. [Google Scholar] [CrossRef]
- Birch, S.; McCaskie, J. Shallow urban lakes: A challenge for lake management. Hydrobiologia 1999, 395, 365–378. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, S.; Liu, C.; Xu, T.; Fan, C. Forms of nutrients in rivers flowing into Lake Chaohu: A comparison between urban and rural rivers. Water 2015, 7, 4523–4536. [Google Scholar] [CrossRef]
- Regnery, J.; Püttmann, W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany. Water Res. 2010, 44, 4097–4104. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, X.; Li, X.; Mou, X. Impacts of meteorological variations on urban lake water quality: A sensitivity analysis for 12 urban lakes with different trophic states. Aquat. Sci. 2014, 76, 339–351. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Zhang, J. Evaluate method and classification standard on lake eutrophication. Environ. Monit. China 2002, 18, 47–49. [Google Scholar]
- Henny, C.; Meutia, A.A. Urban Lakes in Megacity Jakarta: Risk and Management Plan for Future Sustainability. Procedia Environ. Sci. 2014, 20, 737–746. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Huang, Q.; Gao, J. When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China? Ecol. Indic. 2018, 89, 808–817. [Google Scholar] [CrossRef]
- Wang, J.-H.; Li, C.; Xu, Y.-P.; Li, S.-Y.; Du, J.-S.; Han, Y.-P.; Hu, H.-Y. Identifying major contributors to algal blooms in Lake Dianchi by analyzing river-lake water quality correlations in the watershed. J. Clean. Prod. 2021, 315, 128144. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; McCarthy, M.J.; Peierls, B.L.; Wilhelm, S.W. Algal blooms: Noteworthy nitrogen. Science 2014, 346, 175. [Google Scholar]
- Qin, B.; Gao, G.; Zhu, G.; Zhang, Y.; Song, Y.; Tang, X.; Xu, H.; Deng, J. Lake eutrophication and its ecosystem response. Chin. Sci. Bull. 2013, 58, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Winder, M.; Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Xenopoulos, M.A.; Lodge, D.M.; Frentress, J.; Kreps, T.A.; Bridgham, S.D.; Grossman, E.; Jackson, C.J. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol. Oceanogr. 2003, 48, 2321–2334. [Google Scholar] [CrossRef]
- Hiscock, J.G.; Thourot, C.S.; Zhang, J. Phosphorus budget—Land use relationships for the northern Lake Okeechobee watershed, Florida. Ecol. Eng. 2003, 21, 63–74. [Google Scholar] [CrossRef]
- Geng, Y.; Hengxin, Z. Industrial park management in the Chinese environment. J. Clean. Prod. 2009, 17, 1289–1294. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhu, C. River–Lake System Connectivity Effectively Reduced the Salinity of Lake Water in Bosten Lake, Northwest China. Water 2022, 14, 4002. [Google Scholar] [CrossRef]
- Li, P.; Li, G.; Guo, L.; Shi, D. A study on sediment avoidance diversion and the coordinated dispatch of water and sediment at an injection-water supply project on a sediment-laden river. Eng. Appl. Comput. Fluid Mech. 2021, 15, 530–548. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, M.; Peñuelas, J.; Liu, X.; Paerl, H.W.; Elser, J.J.; Sardans, J.; Couture, R.-M.; Larssen, T.; Hu, H. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc. Natl. Acad. Sci. USA 2020, 117, 11566–11572. [Google Scholar]
- Kovacic, D.A.; Twait, R.M.; Wallace, M.P.; Bowling, J.M. Use of created wetlands to improve water quality in the Midwest—Lake Bloomington case study. Ecol. Eng. 2006, 28, 258–270. [Google Scholar]
- Golden, H.E.; Rajib, A.; Lane, C.R.; Christensen, J.R.; Wu, Q.; Mengistu, S. Non-floodplain wetlands affect watershed nutrient dynamics: A critical review. Environ. Sci. Technol. 2019, 53, 7203–7214. [Google Scholar] [CrossRef]
- Abdalrahman, G.; Lai, S.H.; Kumar, P.; Ahmed, A.N.; Sherif, M.; Sefelnasr, A.; Chau, K.W.; Elshafie, A. Modeling the infiltration rate of wastewater infiltration basins considering water quality parameters using different artificial neural network techniques. Eng. Appl. Comput. Fluid Mech. 2022, 16, 397–421. [Google Scholar] [CrossRef]
- Sun, K.; Rajabtabar, M.; Samadi, S.; Rezaie-Balf, M.; Ghaemi, A.; Band, S.S.; Mosavi, A. An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction. Eng. Appl. Comput. Fluid Mech. 2021, 15, 251–271. [Google Scholar]
Lake Name | Lat. | Lon. | Catchment Area (ha) | Lake Area (ha) | WT (°C) | pH | DO (mg/L) | CODMn (mg/L) | BOD (mg/L) | TN (mg/L) | TP (mg/L) | TLI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ChuanJiang | 30.41 | 114.13 | 291 | 668 | 9.3 | 8.7 | 12.4 | 3.02 | 1.40 | 1.58 | 0.02 | 28.2 |
Long | 30.37 | 114.13 | 35 | 168 | 9.6 | 8.5 | 11.0 | 2.70 | 1.90 | 1.72 | 0.07 | 42.1 |
Guanliang | 30.38 | 114.05 | 1238 | 8082 | 9.3 | 8.3 | 10.3 | 3.58 | 1.80 | 0.51 | 0.08 | 43.5 |
Houguan | 30.49 | 114.12 | 1812 | 61,215 | 9.5 | 8.9 | 11.0 | 3.89 | 2.80 | 2.41 | 0.06 | 40.3 |
Nantai | 30.48 | 114.20 | 994 | 5357 | 10.5 | 8.9 | 8.4 | 5.25 | 2.50 | 3.41 | 0.29 | 57.8 |
Niuwei | 30.41 | 114.09 | 34 | 258 | 5.0 | 8.2 | 12.8 | 6.17 | 1.70 | 0.90 | 0.19 | 53.1 |
Shangwu | 30.41 | 114.10 | 54 | 279 | 3.8 | 8.1 | 12.5 | 4.47 | 1.57 | 0.71 | 0.12 | 48.0 |
Wanjia | 30.46 | 114.20 | 511 | 1580 | 9.6 | 9.1 | 7.4 | 8.00 | 5.63 | 9.80 | 0.96 | 71.1 |
Xiashan | 30.37 | 114.06 | 321 | 999 | 7.8 | 8.5 | 11.8 | 3.38 | 1.30 | 1.26 | 0.09 | 44.8 |
Wulang | 30.41 | 114.09 | 82 | 660 | 11.1 | 8.4 | 12.6 | 7.51 | 4.70 | 1.61 | 0.22 | 54.7 |
Zhushan | 30.43 | 114.11 | 2760 | 6690 | 9.9 | 8.8 | 12.7 | 3.65 | 2.90 | 0.93 | 0.07 | 42.1 |
Zhulin | 30.43 | 114.15 | 270 | 345 | 9.8 | 8.5 | 12.1 | 4.24 | 3.90 | 1.79 | 0.14 | 49.7 |
Zhumu | 30.37 | 114.08 | 68 | 342 | 3.4 | 8.2 | 13.4 | 6.72 | 2.70 | 1.53 | 0.16 | 51.2 |
Zhuangyuan | 30.39 | 114.08 | 268 | 860 | 3.9 | 8.6 | 13.2 | 6.25 | 2.78 | 1.86 | 0.15 | 50.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Li, Z.; Li, C.; Liu, B.; Shi, W. Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes. Water 2023, 15, 683. https://doi.org/10.3390/w15040683
Guo W, Li Z, Li C, Liu B, Shi W. Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes. Water. 2023; 15(4):683. https://doi.org/10.3390/w15040683
Chicago/Turabian StyleGuo, Weijie, Ziqian Li, Cai Li, Boyi Liu, and Wenqing Shi. 2023. "Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes" Water 15, no. 4: 683. https://doi.org/10.3390/w15040683
APA StyleGuo, W., Li, Z., Li, C., Liu, B., & Shi, W. (2023). Drainage Ratio Controls Phytoplankton Abundance in Urban Lakes. Water, 15(4), 683. https://doi.org/10.3390/w15040683