A Novel Merging Method for Generating High-Quality Spatial Precipitation Information over Mainland China
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, J.; Chen, J.; Wang, K.; Sivakumar, B. Coherent modes in multi-scale variability of precipitation over the headwater catchments in the Pearl River basin, South China. Hydrol. Process. 2017, 31, 948–955. [Google Scholar] [CrossRef]
- Madakumbura, G.D.; Thackeray, C.W.; Norris, J.; Goldenson, N.; Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 2021, 12, 3944. [Google Scholar] [CrossRef] [PubMed]
- Biemans, H.; Hutjes, R.W.A.; Kabat, P.; Strengers, B.J.; Gerten, D.; Rost, S. Effects of precipitation uncertainty on discharge calculations for main river basins. J. Hydrometeorol. 2009, 10, 1011–1025. [Google Scholar] [CrossRef]
- Schoof, J.T.; Pryor, S.C.; Ford, T.W. Projected Changes in United States Regional Extreme Heat Days Derived from Bivariate Quantile Mapping of CMIP5 Simulations. J. Geophys. Res.-Atmos. 2019, 124, 5214–5232. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Charles, B.W.; Garcia, D.; Lin, K.W.; Gua, G. A revised ground-motion and intensity interpolation scheme for shakemap. Bull. Seismol. Soc. Am. 2010, 100, 3083–3096. [Google Scholar]
- Massari, C.; Crow, W.; Brocca, L. An assessment of the accuracy of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci. 2017, 21, 4347–4361. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RFMEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Intergrated Multi-Satellite Retrievals for the Global Precipition Measurement (GPM) Mission (IMERG). In Satellite Precipitation Meausrement; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–353. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashourl, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 2010, 115, 1–17. [Google Scholar] [CrossRef]
- Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gaugesatellite merged precipitation analyses. J. Geophys. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the triple collocation method across mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.; Reichle, R.; Liu, Q.; Lei, F.; Cosh, M.H. A global assessment of added value in the SMAP level 4 soil moisture product relative to its baseline land surface model. Geophys. Res. Lett. 2019, 46, 6604–6613. [Google Scholar] [CrossRef]
- Manz, B.; Buytaert, W.; Zulkafli, Z. High-resolution satellite-gauge merged precipittion climatologies of the tropical Andes. J. Geophys. Res. 2016, 121, 1190–1207. [Google Scholar] [CrossRef]
- Li, W.Y.; Jiang, Q.; He, X.G.; Sun, H.Q.; Sun, W.W.; Scaiono, M. Effective multi-satellite precipitation fusion procedure conditioned by gauge background fields over the Chinese mainland. J. Hydrol. 2022, 610, 127783. [Google Scholar] [CrossRef]
- Wu, H.C.; Yang, Q.L.; Liu, J.M.; Wang, G.Q. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Shrestha, R.; Houser, P.; Anantharaj, V.G. An optimal merging technique for high resolution precipitation products. J. Adv. Model. Earth Syst. 2011, 4, 4. [Google Scholar] [CrossRef]
- Shen, J.M.; Liu, P.; Xia, J.; Zhao, Y.J.; Dong, Y. Merging multisatellite and gauge precipitation based on geographically weighted regression and long-short-term memory network. Remote Sens. 2022, 14, 3939. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Yang, Z.Z.; Yao, T.C. Bias correction framework for satellite precipitation products using a rain/no rain discriminative model. Sci. Total Environ. 2022, 818, 151679. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.G.; Liang, X.; Nan, Z.T. How much improvement can precipittaion data fusion achieve with a multiscale Kalman smoother-based framework? Water Resour. Res. 2011, 47, W00H12. [Google Scholar] [CrossRef]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Long, D.; Li, C.; Han, Z.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res.-Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nguyen, P.; Naeini, M.R.; Hsu, K.; Braithwaite, D.; Sorooshian, S. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavly precipitation studies. Sci. Data 2021, 8, 157. [Google Scholar] [CrossRef]
- Zhang, J.M.; Xu, J.H.; Dai, X.A.; Ruan, H.H.; Liu, X.L.; Jing, W.L. Multi-source precipitation data merging for heavy rainfall events based on cokriging and machine learning methods. Remote Sens. 2022, 14, 1750. [Google Scholar] [CrossRef]
- Highnam, R.; Brady, M. Model-based image enhancement of far infrared images. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 410–415. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Q.; Lou, S.; Hou, Y.L. Wavelet-based total variation and nonlocal similarity model for image denoising. IEEE Signal Proc. Lett. 2017, 24, 877–881. [Google Scholar] [CrossRef]
- Zhao, N.; Yue, T.X.; Zhou, X.; Zhao, M.W.; Liu, Y.; Du, Z.P.; Zhang, L.L. Statistical downscaling of precipitation using local regression and high accuracy surface modelling method. Theor. Appl. Climatol. 2017, 129, 281–292. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Jiang, L.G.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Liu, J.; Gao, F.; Liu, Z.Z. A Model of Image Denoising Based on Partial Differential Equations. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 1892–1896. [Google Scholar]
- Sun, P.L.; Wang, C.X.; Li, M.; Liu, L.Q. Partial Differential Equations-Based Iterative Denoising Algorithm for Movie Images. Adv. Math. Phys. 2021, 2021, 8176746. [Google Scholar] [CrossRef]
- Ashouri, F.; Eslahchi, M.R. A new PDF learning model for image denoising. Neural Comput. Appl. 2022, 34, 8551–8574. [Google Scholar] [CrossRef]
- Jin, C.; Luan, N.L. An image denoising iterative approach based on total variation and weighting function. Multimed. Tools Appl. 2020, 79, 20947–20971. [Google Scholar] [CrossRef]
- Liu, J.J.; Ma, R.J.; Zeng, X.Y.; Liu, W.Q.; Wang, M.Y.; Chen, H. An efficient non-convex total variation approach for image deblurring and denoising. Appl. Math. Comput. 2021, 397, 125977. [Google Scholar] [CrossRef]
- Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Liu, X.W.; Huang, L.H. Split Bregman iteration algorithm for total bounded variation regularization based image deblurring. J. Math. Anal. Appl. 2010, 372, 486–495. [Google Scholar] [CrossRef]
- Xu, J.M.; Zhu, S.Y.; Soh, Y.C.; Xie, L.H. A Bregman Splitting Algorithm for Distributed Optimization over Networks. arXiv 2016, arXiv:1608.08031. [Google Scholar]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 2. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.J.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Zhao, N. Evaluation of eight high-resolution gridded precipitation products in the Heihe River basin, Northwest China. Remote Sens. 2022, 14, 1458. [Google Scholar] [CrossRef]
- Zhou, Z.T.; Guo, B.; Xing, W.X.; Zhou, J.; Xu, F.L.; Xu, Y. Comprehensive evaluation of the lastest GPM era IMERG and GSMaP precipitation products over mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901–2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N. A Novel Merging Method for Generating High-Quality Spatial Precipitation Information over Mainland China. Water 2023, 15, 575. https://doi.org/10.3390/w15030575
Zhao N. A Novel Merging Method for Generating High-Quality Spatial Precipitation Information over Mainland China. Water. 2023; 15(3):575. https://doi.org/10.3390/w15030575
Chicago/Turabian StyleZhao, Na. 2023. "A Novel Merging Method for Generating High-Quality Spatial Precipitation Information over Mainland China" Water 15, no. 3: 575. https://doi.org/10.3390/w15030575
APA StyleZhao, N. (2023). A Novel Merging Method for Generating High-Quality Spatial Precipitation Information over Mainland China. Water, 15(3), 575. https://doi.org/10.3390/w15030575