Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies
Abstract
:1. Introduction
2. Methodology
3. Case Studies
3.1. Case Study: Cocoa, FL
3.1.1. Site Geology and Hydrogeology
3.1.2. Nature of Contamination
3.1.3. Remedial History
3.1.4. Lessons Learned
3.2. Case Study: Jacksonville Naval Air Station
3.2.1. Site Geology and Hydrogeology
3.2.2. Nature of Contamination
3.2.3. Remedial History
3.2.4. Lessons Learned
3.3. Case Study: Naval Air Warfare Center (NAWC) Superfund Site
3.3.1. Site Geology and Hydrogeology
3.3.2. Nature of Contamination
3.3.3. Remedial History
3.3.4. Lessons Learned
3.4. Case Study: Brandywine DRMO Yard
3.4.1. Site Geology and Hydrogeology
3.4.2. Nature of Contamination
3.4.3. Remedial History
3.4.4. Lessons Learned
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2H | Deuterium |
13C | Carbon isotope with an atomic mass of 13 amu |
AFB | Air force base |
AS/SVE | Air sparging and soil vapor extraction |
bgs | Below ground surface |
cDCE | Cis-1,2-dichloroethene |
COC | Contaminant of concern |
CSIA | Compound-specific isotope analysis |
CVOC | Chlorinated volatile organic compound |
DCE | 1,1-dichloroethylene |
Dhb | Dehalobacter |
Dhc | Dehalococcoides |
DNAPL | Dense non-aqueous phase liquid |
DRMO | Defense Reutilization and Marketing Office |
ECD | Electron capture detector |
EK | Electrokinetic |
ERH | Electrical resistance heating |
ESTCP | Environmental Security Technology Certificate Program |
HCZ | High-conductivity zone |
ISCO | In situ chemical oxidation |
LCZ | Low-conductivity zone |
MCL | Maximum contaminant level |
MIP | Membrane interface probe |
NAPL | Nonaqueous phase liquid |
NAS | Naval air station |
NAWC | Naval Air Warfare Center |
ORP | Oxidation reduction potential |
PAT | Pump-and-treat |
PCE | Tetrachloroethylene |
PFC | Precision Fabricating and Cleaning |
SERDP | Strategic Environmental Research and Development Program |
TCE | Trichloroethylene |
TOC | Total organic carbon |
USAF | United States Air Force |
U.S. EPA/EPA | United States Environmental Protection Agency |
USGS | United States Geological Survey |
VC | Vinyl chloride |
vcrA | Vinyl chloride reductase |
VFA | Volatile fatty acid |
VOC | Volatile organic compound |
δ13C | Isotopic signature based on the ratio of 13C to 12C in the sample to that in a standard |
References
- Foster, S. The Chalk groundwater tritium anomaly—A possible explanation. J. Hydrol. 1975, 25, 159–165. [Google Scholar] [CrossRef]
- Sudicky, E.A.; Gillham, R.; Frind, E. Experimental investigation of solute transport in stratified porous media 1. The nonreactive case. Water Resour. Res. 1985, 21, 1035–1041. [Google Scholar] [CrossRef]
- Parker, B.L.; Gillham, R.; Cherry, J. Diffusive Disappearance of Immiscible-Phase Organic Liquids in Fractured Geologic Media. Groundwater 1994, 32, 805–820. [Google Scholar] [CrossRef]
- Ball, W.P.; Liu, C.; Xia, G.; Young, D.F. A diffusion-based interpretation of tetrachloroethene and trichloroethene concentration profiles in a groundwater aquitard. Water Resour. Res. 1997, 33, 2741–2757. [Google Scholar] [CrossRef]
- Dearden, R.; Noy, D.; Lelliott, M.; Wilson, R.; Wealthall, G. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone. J. Contam. Hydrol. 2013, 153, 141–155. [Google Scholar] [CrossRef]
- Lipson, D.S.; Kueper, B.H.; Gefell, M.J. Matrix diffusion-derived plume attenuation in fractured bedrock. Groundwater 2005, 43, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Sale, T.; Parker, B.; Newell, C.; Devlin, J. Management of Contaminants Stored in Low Permeability Zones—A State of the Science Review; SERDP Project ER-1740 Report. 2013. Available online: https://apps.dtic.mil/sti/pdfs/ADA619819.pdf (accessed on 13 January 2023).
- You, X.; Liu, S.; Dai, C.; Guo, Y.; Zhong, G.; Duan, Y. Contaminant occurrence and migration between high- and low-permeability zones in groundwater systems: A review. Sci. Total. Environ. 2020, 743, 140703. [Google Scholar] [CrossRef]
- Brooks, M.; Yarney, E.; Huang, J. Strategies for Managing Risk due to Back Diffusion. Groundw. Monit. Remediat. 2021, 41, 76–98. [Google Scholar] [CrossRef]
- Borden, R.C.; Cha, K.Y. Evaluating the impact of back diffusion on groundwater cleanup time. J. Contam. Hydrol. 2021, 243, 103889. [Google Scholar] [CrossRef]
- Liu, C.; Ball, W.P. Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions: Predictions and measurements. Groundwater 2002, 40, 175–184. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.D.; Jawitz, J.W. Solute source depletion control of forward and back diffusion through low-permeability zones. J. Contam. Hydrol. 2016, 193, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.; Nelson, N.; Zhang, Z.; Blue, J.; Rohrer, J.; Allen, T. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. J. Contam. Hydrol. 2007, 90, 21–40. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour. Res. 2005, 41, 12411. [Google Scholar] [CrossRef]
- Mundle, K.; Reynolds, D.A.; West, M.R.; Kueper, B.H. Concentration rebound following in situ chemical oxidation in fractured clay. Groundwater 2007, 45, 692–702. [Google Scholar] [CrossRef]
- Cavanagh, B.A.; Johnson, P.C.; Daniels, E.J. Reduction of diffusive contaminant emissions from a dissolved source in a lower permeability layer by sodium persulfate treatment. Environ. Sci. Technol. 2014, 48, 14582–14589. [Google Scholar] [CrossRef]
- Halloran, L.J.; Hunkeler, D. Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion. Sci. Total. Environ. 2020, 722, 137749. [Google Scholar] [CrossRef]
- Parker, B.L.; Chapman, S.W.; Guilbeault, M.A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 86–104. [Google Scholar] [CrossRef]
- Adamson, D.T.; Chapman, S.W.; Farhat, S.K.; Parker, B.L.; Deblanc, P.; Newell, C.J. Characterization and source history modeling using low-k zone profiles at two source areas. Groundw. Monit. Remediat. 2015, 35, 52–69. [Google Scholar] [CrossRef]
- Parker, B.L.; Cherry, J.A.; Chapman, S.W. Discrete fracture network approach for studying contamination in fractured rock. AQUA Mundi 2012, 3, 101–116. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Carroll, K.C.; Guo, Z.; Mainhagu, J. Borehole diffusive flux apparatus for characterizing diffusive mass-transfer in subsurface systems. Environ. Earth Sci. 2018, 77, 648. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.E.; Lippincott, D.R.; Klammler, H.; Hatfield, K. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach. J. Contam. Hydrol. 2018, 209, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Harte, P.T.; Brandon, W. Borehole-scale testing of matrix diffusion for contaminated-rock aquifers. Remediation 2020, 30, 37–53. [Google Scholar] [CrossRef]
- Allen-King, R.M.; Kiekhaefer, R.L.; Goode, D.J.; Hsieh, P.A.; Lorah, M.M.; Imbrigiotta, T.E. A borehole test for chlorinated solvent diffusion and degradation rates in sedimentary rock. Groundw. Monit. Remediat. 2022, 42, 23–34. [Google Scholar] [CrossRef]
- Parker, J.C.; Kim, U. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation. J. Contam. Hydrol. 2015, 182, 157–172. [Google Scholar] [CrossRef]
- Falta, R.W.; Wang, W. A semi-analytical method for simulating matrix diffusion in numerical transport models. J. Contam. Hydrol. 2017, 197, 39–49. [Google Scholar] [CrossRef]
- Farhat, S.K.; Newell, C.; Falta, R.; Lynch, K. A Practical Approach for Modeling Matrix Diffusion Effects in REMChlor, ESTCP Project Report ER-201426. 2018. Available online: https://serdp-estcp.org/projects/details/b4c68c7b-a43c-49e8-88be-7521863e2792 (accessed on 13 January 2023).
- Esfahani, S.G.; Valocchi, A.J.; Werth, C.J. Using MODFLOW and RT3D to simulate diffusion and reaction without discretizing low permeability zones. J. Contam. Hydrol. 2021, 239, 103777. [Google Scholar] [CrossRef]
- Muniruzzaman, M.; Rolle, M. Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains. J. Contam. Hydrol. 2020, 237, 103754. [Google Scholar] [CrossRef]
- Matthieu, D.E.; Brusseau, M.L.; Guo, Z.; Plaschke, M.; Carroll, K.C.; Brinker, F. Persistence of a groundwater contaminant plume after hydraulic source containment at a chlorinated-solvent contaminated site. Groundw. Monit. Remediat. 2014, 34, 23–32. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Guo, Z. Assessing contaminant-removal conditions and plume persistence through analysis of data from long-term pump-and-treat operations. J. Contam. Hydrol. 2014, 164, 16–24. [Google Scholar] [CrossRef]
- McDade, J.M.; Kulkarni, P.R.; Seyedabbasi, M.A.; Newell, C.J.; Gandhi, D.; Gallinatti, J.D.; Cocianni, V.; Ferguson, D.J. Matrix diffusion modeling applied to long-term pump-and-treat data: 1. Method development. Remediat. J. 2013, 23, 71–91. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A. Sustainability: A new imperative in contaminated land remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- Huang, Q.; Dong, H.; Towne, R.M.; Fischer, T.B.; Schaefer, C.E. Permanganate diffusion and reaction in sedimentary rocks. J. Contam. Hydrol. 2014, 159, 36–46. [Google Scholar] [CrossRef]
- Baker, R.S.; Nielsen, S.G.; Heron, G.; Ploug, N. How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations? Groundw. Monit. Remediat. 2016, 36, 38–53. [Google Scholar] [CrossRef]
- Lima, G.; Parker, B.; Meyer, J. Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ. Sci. Technol. 2012, 46, 5756–5763. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Towne, R.M.; Lippincott, D.R.; Lazouskaya, V.; Fischer, T.B.; Bishop, M.E.; Dong, H. Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices. Environ. Sci. Technol. 2013, 47, 4291–4298. [Google Scholar] [CrossRef]
- Yu, R.; Andrachek, R.G.; Lehmicke, L.G.; Freedman, D.L. Remediation of chlorinated ethenes in fractured sandstone by natural and enhanced biotic and abiotic processes: A crushed rock microcosm study. Sci. Total. Environ. 2018, 626, 497–506. [Google Scholar] [CrossRef]
- Berns, E.C.; Sanford, R.A.; Valocchi, A.J.; Strathmann, T.J.; Schaefer, C.E.; Werth, C.J. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones. J. Contam. Hydrol. 2019, 224, 103480. [Google Scholar] [CrossRef]
- Hnatko, J.P.; Yang, L.; Pennell, K.D.; Abriola, L.M.; Capiro, N. Bioenhanced back diffusion and population dynamics of Dehalococcoides mccartyi strains in heterogeneous porous media. Chemosphere 2020, 254, 126842. [Google Scholar] [CrossRef]
- Wanner, P.; Parker, B.L.; Hunkeler, D. Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume persistence due to back-diffusion. Sci. Total. Environ. 2018, 633, 1602–1612. [Google Scholar] [CrossRef]
- Horst, J.; Divine, C.; Schnobrich, M.; Oesterreich, R.; Munholland, J. Groundwater remediation in low-permeability settings: The evolving spectrum of proven and potential. Groundw. Monit. Remediat. 2019, 39, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Brusseau, M.; Matthieu, D.; Carroll, K.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M. Characterizing long-term contaminant mass discharge and the relationship between reductions in discharge and reductions in mass for DNAPL source areas. J. Contam. Hydrol. 2013, 149, 1–12. [Google Scholar] [CrossRef]
- U.S. EPA. Second Five-Year Review Report for Tucson International Airport Area Superfund Site, Pima County, Arizona. 2018. Available online: https://semspub.epa.gov/work/09/100010552.pdf (accessed on 13 January 2023).
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume. J. Hazard. Mater. 2018, 365, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, F. Ground-water remediation using “smart pump and treat”. Ground Water 1993, 31, 98–106. [Google Scholar] [CrossRef]
- Labolle, E.M.; Fogg, G.E. Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp. Porous Media 2001, 42, 155–179. [Google Scholar] [CrossRef]
- Hoffman, F.; Blake, R.G.; Gelinas, R.J.; Noyes, C.D.; Demir, Z.; McKereghan, P.F. A conceptual model and remediation strategy for volatile organic compounds in groundwater in unconsolidated sediments: A Lawrence Livermore National Laboratory case study. Environ. Eng. Geosci. 2003, 9, 83–94. [Google Scholar] [CrossRef]
- Verce, M.F.; Madrid, V.M.; Gregory, S.D.; Demir, Z.; Singleton, M.J.; Salazar, E.P.; Jackson, P.J.; Halden, R.U.; Verce, A. A long-term field study of in situ bioremediation in a fractured conglomerate trichloroethene source zone. Bioremediat. J. 2015, 19, 18–31. [Google Scholar] [CrossRef]
- McKereghan, P.; Oldani, K.; Noyes, C.; Porcuban, A.; Demir, Z. LLNL Groundwater Project 2016 Annual Report. USDOE. 2016. Available online: https://erd.llnl.gov/media/documents/_UCRL-AR-126020-16_S200_Annual.pdf (accessed on 13 January 2023).
- Mackay, D.; Wilson, R.; Brown, M.; Ball, W.; Xia, G.; Durfee, D. A controlled field evaluation of continuous vs. pulsed pump-and-treat remediation of a VOC-contaminated aquifer: Site characterization, experimental setup, and overview of results. J. Contam. Hydrol. 2000, 41, 81–131. [Google Scholar] [CrossRef]
- Yang, M.; Annable, M.; Jawitz, J. Field-scale forward and back diffusion through low-permeability zones. J. Contam. Hydrol. 2017, 202, 47–58. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Lavorgna, G.M.; White, E.B.; Annable, M.D. Bioaugmentation in a well-characterized fractured rock DNAPL source area. Groundw. Monit. Remediat. 2017, 37, 35–42. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Lavorgna, G.; Annable, M.; White, E. Designing, Assessing, and Demonstrating Sustainable Bioaugmentation for Treatment of DNAPL Sources in Fractured Bedrock. ESTCP Project ER-201210 Report. 2017. Available online: https://serdp-estcp.org/projects/details/2db02bba-616b-4e08-aaf9-7e5eb174317e (accessed on 13 January 2023).
- Goldstein, K.J.; Vitolins, A.; Navon, D.; Parker, B.; Chapman, S.; Anderson, G. Characterization and pilot-scale studies for chemical oxidation remediation of fractured shale. Remediat. Autumn 2004, 14, 19–37. [Google Scholar] [CrossRef]
- Kavanaugh, M.; Deeb, R.; Hawley, E. Diagnostic Tools for Performance Evaluation of Innovative In-Situ Remediation Technologies at Chlorinated Solvent-Contaminated Sites. Final Report—Watervliet Arsenal. ESTCP Project ER-200318. 2011. Available online: https://serdp-estcp.org/projects/details/0e204a79-b075-480e-8f82-42d11a519eaf (accessed on 13 January 2023).
- Parker, B.L.; Cherry, J.; Chapman, S.; Guilbeault, M. Review and analysis of chlorinated solvent dense non-aqueous phase liquid distributions in five sandy aquifers. Vadose Zone J. 2003, 2, 116–137. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Lippincott, D.; Hatfield, K.; Klammler, H. Rapid Assessment of Remedial Effectiveness and Rebound in Fractured Bedrock. ESTCP Project ER-201330 Report. 2017. Available online: https://serdp-estcp.org/projects/details/cc8626e3-691e-4482-9ca4-320fa1d6f74c (accessed on 13 January 2023).
- Guilbeault, M.A.; Parker, B.L.; Cherry, J.A. Mass and flux distributions from DNAPL zones in sandy aquifers. Groundwater 2005, 43, 70–86. [Google Scholar] [CrossRef]
- Carey, G.R.; Chapman, S.W.; Parker, B.L.; McGregor, R. Application of an adapted version of MT3DMS for modeling back-diffusion remediation timeframes. Remediat. J. 2015, 25, 55–79. [Google Scholar] [CrossRef]
- Geosyntec Consultants. Bioremediation Implementation Status Letter; Letter to EPA Region 4; Precision Fabricating & Cleaning Company, Inc.: Cocoa, FL, USA, 29 July 2016. [Google Scholar]
- Geosyntec Consultants. Remedial Measures Annual Report; Precision Fabricating & Cleaning Company, Inc.: Cocoa, FL, USA, 2019. [Google Scholar]
- Geosyntec Consultants. Remedial Measures Annual Report; Precision Fabricating & Cleaning Company, Inc.: Cocoa, FL, USA, 2022. [Google Scholar]
- Cox, E.; Wang, J.; Reynolds, D.; Gent, D.; Singletary, M.; Wilson, A. Final Report: Electrokinetic-Enhanced (EK-Enhanced) Amendment Delivery for Remediation of Low Permeability and Heterogeneous Materials. ESTCP Project ER-201325. 2018. Available online: https://clu-in.org/download/techfocus/electrokinetics/EK-ER-201325-FR.pdf (accessed on 13 January 2023).
- Meinel, M.; Wang, J.; Cox, E.; Dennis, P.; Torres, C.; Krajmalnik-Brown, R. The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site. Appl. Microbiol. Biotechnol. 2021, 105, 6489–6497. [Google Scholar] [CrossRef]
- Lacombe, P.J. Mass of Chlorinated Volatile Organic Compounds Removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996–2010; U.S. Geological Survey: Reston, VA, USA, 2011. [CrossRef]
- Goode, D.J.; Imbrigiotta, T.E.; Lacombe, P.J. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling. J. Contam. Hydrol. 2014, 171, 1–11. [Google Scholar] [CrossRef]
- Révész, K.M.; Lollar, B.S.; Kirshtein, J.D.; Tiedeman, C.R.; Imbrigiotta, T.E.; Goode, D.; Shapiro, A.; Voytek, M.A.; Lacombe, P.J.; Busenberg, E. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks. J. Contam. Hydrol. 2013, 156, 62–77. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Towne, R.M.; Lippincott, D.R.; Lacombe, P.J.; Bishop, M.E.; Dong, H. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE. Chemosphere 2015, 119, 744–749. [Google Scholar] [CrossRef]
- Shapiro, A.M.; Evans, C.E.; Hayes, E.C. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents. J. Contam. Hydrol. 2017, 203, 70–84. [Google Scholar] [CrossRef]
- Shapiro, A.M.; Tiedeman, C.R.; Imbrigiotta, T.E.; Goode, D.J.; Hsieh, P.A.; Lacombe, P.J.; DeFlaun, M.F.; Drew, S.R.; Curtis, G.P. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix. Groundwater 2017, 56, 317–336. [Google Scholar] [CrossRef]
- Tiedeman, C.R.; Shapiro, A.M.; Hsieh, P.A.; Imbrigiotta, T.E.; Goode, D.J.; Lacombe, P.J.; DeFlaun, M.F.; Drew, S.R.; Johnson, C.D.; Williams, J.H.; et al. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations. Groundwater 2017, 56, 300–316. [Google Scholar] [CrossRef]
- HydroGeoLogic, Inc. (HGL). Final Supplemental Remedial Investigation Report, Brandywine DRMO Yard: Site SS-01; Joint Base Andrews: Prince George’s County, MD, USA, 2013.
- HydroGeoLogic, Inc. (HGL). Final Feasibility Study, Brandywine DRMO Yard: Site SS-01-Joint Base Andrews, Maryland; Joint Base Andrews: Prince George’s County, MD, USA, 2015.
- HydroGeoLogic, Inc. (HGL). Revised Final Feasibility Study Brandywine DRMO Yard: Site SS-01; Joint Base Andrews: Prince George’s County, MD, USA, 2016.
- HydroGeoLogic, Inc. (HGL). ERH Confirmation Groundwater Sampling Update, Brandywine DRMO.; Joint Base Andrews: Prince George’s County, MD, USA, 2019.
- HydroGeoLogic, Inc. (HGL). Remedial Action Report Electrical Resistance Heating Brandywine DRMO: Site SS-01; Joint Base Andrews: Prince George’s County, MD, USA, 2020.
- HydroGeoLogic, Inc. (HGL). Remedial Action Operations Monitoring Report, September 2020, Brandywine DRMO: Site SS-01; Joint Base Andrews: Prince George’s County, MD, USA, 2020.
- Thermal Remediation Services, Inc. (TRS). Final Remedial Design Remedial Action Work Plan for Brandywine Defense Reutilization and Marketing Office (DRMO) Yard In Situ Thermal Remediation, Brandywine, Maryland; Joint Base Andrews: Prince George’s County, MD, USA, 2018.
- Parker, B.L.; Cherry, J. Potassium Permanganate (KMnO4) Pilot Study Final Report; Precision Fabricating & Cleaning Company, Inc.: Cocoa, FL, USA, 2005. [Google Scholar]
- Deeb, R.; Hawley, E.; Kell, L.; O’Laskey, R. Assessing Alternative Endpoints for Groundwater Remediation at Contaminated Sites. ESTCP Project ER-200832. 2011. Available online: https://serdp-estcp.org/projects/details/c0e9760e-349e-428a-a4a0-cb6c818c9e74 (accessed on 17 January 2023).
- Johnson, P.; Ekre, R.; Krajmalnik-Brown, R.; Rittman, B.; Lundegard, P.; Hinchee, R. Assessment of the Natural Attenuation of NAPL Source Zones and Post-Treatment NAPL Source Zone Residuals, ESTCP Project ER-200705. November 2013. Available online: https://apps.dtic.mil/sti/pdfs/ADA606679.pdf (accessed on 17 January 2023).
- Resolution Consultants. Five-Year Review: Operable Units 1, 2, 3, 4, 5, 6, 7, and 8, Naval Air Station Jacksonville, Jacksonville, Florida. Prepared for: Department of the Navy Naval Facilities Engineering Command Southeast. Contract Number N62470-11-D-8013. 2016. Available online: https://semspub.epa.gov/work/04/11018513.pdf (accessed on 17 January 2023).
- Tetra Tech NUS. Five-Year Review: Operable Units 1, 2, 3, 4, 5, 6, 7, and 8, Naval Air Station Jacksonville, Jacksonville, Florida; Contract Number N62467-04-D-0055, Contract Task Order 0152; Naval Facilities Engineering Command Southeast: Jacksonville, FL, USA, 2011.
- Geosyntec Consultants. Enhanced In Situ Bioremediation Final Groundwater Monitoring Report for Operable Unit (OU) 3 NAS Jacksonville, FL; Naval Air Station: Jacksonville, FL, USA, 2016.
- Tetra Tech. Final Proposed Plan for Operable Unit 3 (OU 3) Potential Sources of Contamination 11, 12, 13, 14, 15, 16, and 48 (PSC 11, PSC 12, PSC 13, PSC, 14, PSC 15, PSC 16, PSC 48) Areas A through G, Buildings 101S and 780, NAS Jacksonville, FL; Naval Air Station: Jacksonville, FL, USA, 2022.
- Acar, Y.B.; Alshawabkeh, A.N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27, 2638–2647. [Google Scholar] [CrossRef]
- Reddy, K.R.; Cameselle, C. Electrochemical Remediation Techniques for Polluted Soil, Sediments, and Groundwater; John Wiley & Sons: Hoboken, NJ, USA, 2009; 732p. [Google Scholar]
- Gill, R.T.; Harbottle, M.; Smith, J.; Thornton, S. Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications. Chemosphere 2014, 107, 31–42. [Google Scholar]
- Wick, L.Y.; Mattle, P.A.; Wattiau, P.; Harms, H. Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ. Sci. Technol. 2004, 38, 4596–4602. [Google Scholar] [CrossRef]
- Inglis, A.M.; Head, N.; Chowdhury, A.; Garcia, A.; Reynolds, D.; Hogberg, D.; Edwards, E.; Lomheim, L.; Weber, K.; Wallace, S.; et al. Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation. Water Res. 2021, 201, 117305. [Google Scholar]
- McGuire, T.M.; McDade, J.M.; Newell, C.J. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Groundw. Monit. Remediat. 2006, 26, 73–84. [Google Scholar] [CrossRef]
- United States Geological Survey. Contaminant Fate and Transport Studies in Fractured Sedimentary Rock Aquifers at the Former Naval Air Warfare Center (NAWC), West Trenton, N.J. 2020. Available online: https://www.usgs.gov/centers/new-jersey-water-science-center/science/contaminant-fate-and-transport-studies-fractured?qt-science_center_objects=0#overview (accessed on 17 January 2023).
- Lacombe, P.J. Hydrogeologic Framework, Water Levels, and Trichloroethylene Contamination, Naval Air Warfare Center, West Trenton, New Jersey, 1993–1997; U.S. Geological Survey Water-Resources Investigations Report 98-4167; U.S. Geological Survey: Trenton, NJ, USA, 2000.
- Tiedeman, C.R. Research on Fate, Transport, and Remediation of Chlorinated Solvents in Fractured Sedimentary Rocks at the former Naval Air Warfare Center, West Trenton, NJ. 2015. Available online: https://semspub.epa.gov/work/02/363277.pdf (accessed on 17 January 2023).
- Bradley, P.M.; Journey, C.A.; Kirshtein, J.D.; Voytek, M.A.; Lacombe, P.J.; Imbrigiotta, T.E.; Chapelle, F.H.; Tiedeman, C.J.; Goode, D.J. Enhanced dichloroethene biodegradation in fractured rock under biostimulated and bioaugmented conditions. Remediation 2012, 22, 21–32. [Google Scholar] [CrossRef]
- United States Geological Survey. Contamination in Fractured-Rock Aquifers-Research at the former Naval Air Warfare Center, West Trenton, New Jersey. Fact Sheet 2007–3074. September 2007. Available online: https://pubs.er.usgs.gov/publication/fs20073074 (accessed on 17 January 2023).
- Koman Government Solutions (KGS). Groundwater Treatment Facility Report; Former Naval Air Warfare Center: Trenton, NJ, USA, 2020. Available online: https://administrative-records.navfac.navy.mil/?LV364VU4G47XKK (accessed on 30 January 2023).
- KGS. Groundwater Treatment Facility Report; Former Naval Air Warfare Center: Trenton, NJ, USA, 2021. Available online: https://administrative-records.navfac.navy.mil/?LV364VU4G47XKK (accessed on 30 January 2023).
- Chapelle, F.H.; Lacombe, P.J.; Bradley, P.M. Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured rock aquifer. Remediat. J. 2012, 22, 7–20. [Google Scholar] [CrossRef]
- Wiedemeier, T.H.; Rifia, H.; Newel, C.; Wilson, J. Natural Attenuation for Fuels and Chlorinated Solvents in the Subsurface; John Wiley & Sons, Inc.: New York, NY, USA, 1999; 617p. [Google Scholar]
- United States Air Force. Record of Decision, SS-01; Brandywine Defense Reutilization and Marketing Office: Brandywine, MD, USA, 2017.
- United Research Services (URS). Final Remedial Investigation Report, Site SS-01, Brandywine DRMO; Andrews Air Force Base: Prince George’s County, MD, USA, 2006; Volume 1.
- Cottrell, K.J. Use of membrane interface probe and passive flux meters for high resolution site characterization and measurement of mass flux/discharge. In Proceedings of the 9th Design and Construction Issues at Hazardous Waste Sites, Society of American Military Engineers, Philadelphia, PA, USA, 20–22 April 2016. [Google Scholar]
- United States Geological Survey (USGS). Work Plan Remedial Investigation/Feasibility Study Installation Restoration Program, Andrews Air Force Base, Maryland; United States Air Force: Washington, DC, USA, 1988.
- Dames & Moore. Report of Findings, Trichloroethylene Plume Delineation and Source Definition at the Brandywine Defense and Reutilization Marketing Office Site, Andrews Air Force Base, Maryland; Hazardous Waste Remedial Action Program, Martin Marietta Energy Systems, Inc.: Oak Ridge, TN, USA, 1992. [Google Scholar]
- Halliburton NUS Corp. Remedial Action Report Soil and Tank Removal-Brandywine DRMO. Volume I of III. Andrews Air Force Base, Maryland; Air Force Center for Environmental Excellence, Brooks Air Force Base: San Antonio, TX, USA, 1995.
- United States Air Force (USAF). Interim Record of Decision, September 2006, Site SS-01, Brandywine DRMO, Andrews Air Force Base, Maryland. September 2006. Available online: https://semspub.epa.gov/work/03/2072289.pdf (accessed on 17 January 2023).
- Joint Base Andrews. Fact Sheet: January 2020 Update in Environmental Restoration Activities at Brandywine. 2020. Available online: https://www.jba.af.mil/Portals/38/documents/Environmental/SS-01%20Jan%202020%20Public%20Fact%20Sheet%20Done.pdf?ver=Tj50fkBu4FpdySUzv17Ajw%3D%3D×tamp=1604089561878 (accessed on 17 January 2023).
- Chambon, J.C.; Broholm, M.M.; Binning, P.J.; Bjerg, P.L. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture–clay matrix system. J. Contam. Hydrol. 2010, 112, 77–90. [Google Scholar] [CrossRef]
- Parker, B.L.; Chapman, S.; Cherry, J. Plume persistence in fractured sedimentary rock after source zone removal. Ground Water 2010, 48, 799–803. [Google Scholar]
- West, M.R.; Kueper, B.H. Plume detachment and recession times in fractured rock. Groundwater 2010, 48, 416–426. [Google Scholar] [CrossRef]
- Broholm, M.; Fabricius, I.; Bjerg, P. Determination of matrix pore size distribution in fractured clayey till and assessment of matrix migration of dechlorinating bacteria. Bioremediation J. 2014, 18, 295–308. [Google Scholar]
- United States Environmental Protection Agency (U.S. EPA). Rules of thumb for Superfund Remedy Selection, Solid Waste and Emergency Response; EPA 540-R-97-013; United States Environmental Protection Agency: Washington, DC, USA, 1997; 27p.
- U.S. EPA. The DNAPL Remediation Challenge: Is there a case for source depletion? National Risk Management Research Laboratory; EPA/600/R-03/143; Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2003; 111p.
Site Name and Location | Primary COC 1 | Geology | Remediation | Key Points | References |
---|---|---|---|---|---|
Tucson International Airport Area, Tucson, AZ | Trichloroethylene (TCE), 1,1-dichloroethylene (DCE), chloroform, and chromium | Alluvial sediments interbedded locally with volcanic units (flows, tuffs, etc.) | Pump and treat (PAT), soil vapor extraction, hydraulic containment, in situ chemical oxidation (ISCO) |
| [13,43,44,45] |
Lawrence Livermore National Laboratory, Livermore, CA | TCE, tetrachloroethylene (PCE) | Primary alluvial clay, silt, sand, and gravel | PAT, soil vapor extraction, bioremediation pilot test |
| [46,47,48,49,50] |
Dover Air Force Base (AFB), Dover, DE | TCE, PCE, cis-1,2-dichloroethylene (cDCE), 1,1,1-trichloroethane, vinyl chloride (VC) | Sand and silt overlying an ~5 m thick silt and silty clay loam aquitard | Excavation of DNAPL-contaminated surface soils, pilot tests of PAT in isolated test cells |
| [11,51,52] |
Edwards AFB, CA | PCE | Fractured granitic bedrock | Bioaugmentation with groundwater recirculation |
| [53,54] |
Watervliet Arsenal, Watervliet, NY | PCE and cDCE, with lesser TCE and VC | Fractured shale bedrock | ISCO using potassium and sodium permanganate |
| [55,56] |
Connecticut site (undisclosed location) | TCE | Sand aquifer; clayey silt aquitard | Steel sheet pile enclosure to isolate DNAPL |
| [14,57] |
Calf Pasture Point, Naval Construction Battalion Center, North Kingston, RI | TCE | Sand, silt, and till over fractured bedrock | Monitoring only |
| [22,58] |
Site Name and Location | Primary COC | Geology | Remediation | Key Points | Key References |
---|---|---|---|---|---|
Precision Fabricating and Cleaning (PFC), Cocoa, FL | TCE | Sand and silt with clay lenses | PAT and enhanced bioremediation |
| [57,59,60,61,62,63] |
Jacksonville Naval Air Station (NAS), Jacksonville, FL | PCE, cDCE, and VC | Layers of sand and clay | Electrokinetic (EK)-enhanced bioaugmentation |
| [19,64,65] |
Naval Air Warfare Center (NAWC), West Trenton, NJ | TCE | Fractured mudstones and sandstones with high organic carbon content | PAT, bioaugmentation delivered to HCZ |
| [24,66,67,68,69,70,71,72] |
Brandywine Defense Reutilization and Marketing Office (DRMO) Yard, Brandywine, MD | Aquitard—TCE, cDCE, VC, PCE | Layers of clay, silt, sand, and gravel | Electrical resistance heating (ERH) thermal treatment |
| [73,74,75,76,77,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blue, J.; Boving, T.; Tuccillo, M.E.; Koplos, J.; Rose, J.; Brooks, M.; Burden, D. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. Water 2023, 15, 570. https://doi.org/10.3390/w15030570
Blue J, Boving T, Tuccillo ME, Koplos J, Rose J, Brooks M, Burden D. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. Water. 2023; 15(3):570. https://doi.org/10.3390/w15030570
Chicago/Turabian StyleBlue, Julie, Thomas Boving, Mary Ellen Tuccillo, Jonathan Koplos, Jason Rose, Michael Brooks, and David Burden. 2023. "Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies" Water 15, no. 3: 570. https://doi.org/10.3390/w15030570
APA StyleBlue, J., Boving, T., Tuccillo, M. E., Koplos, J., Rose, J., Brooks, M., & Burden, D. (2023). Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. Water, 15(3), 570. https://doi.org/10.3390/w15030570