Computational Tools for Supporting the Operation and Management of Water Distribution Systems towards Digital Transformation
Abstract
:1. Introduction
2. Data Integration and Analytics Platform
- -
- The user selects a given area of analysis (e.g., the complete system or a particular subsystem) and defines the period of analysis (e.g., 12 months).
- -
- The platform prepares the required data for analysis by querying the database and performs necessary calculations for performance assessment (e.g., performance indicators, water and energy balance). For water and energy balances, the user has the possibility to validate and change the input values before the final calculation.
- -
- The results are displayed in a user-friendly dashboard.
3. Flow Rate Time Series Processing
4. Optimal Number and Location of Pressure Sensors
5. Identification of Critical Areas for Pipe Burst Location
6. Prioritization of Rehabilitation Units for Interventions
7. Discussion
7.1. Practicality of the Developed Tools
- -
- The developed tools are usually very specific and require training to be used by utilities. This training can only be provided by the R&D team.
- -
- As the project funding has ended, part of the R&D team is unavoidably dispersed (in particular, researchers on computer science and mathematicians), and thus, it is not easy to continuously carry out updates on these tools. However, the core R&D team, mainly composed of the authors of this paper, will pursue further developments in the scope of their doctoral projects and will continue to make efforts to raise more funding.
- -
- Software and hardware limitations may affect the tools made available as, for instance, the university servers may not be capable of handling the expected traffic of free-to-use tools (especially when the provided service involves complex optimization or AI analyses).
- -
- Problems with the standardization of input files may occur since the tools were developed to meet the requirements of specific utilities. In fact, certain details, data formats, or data specificities not considered in the five participating utilities may exist in other water utilities.
7.2. Envisioned Journey towards Digital Water Transformation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoso, M.A.; Brito, R.; Ribeiro, R.; Alegre, H. Infrastructure Asset Management—Maturity Assessment of Water Utilities Based on International Standards ISO 55000. 2017. Available online: http://repositorio.lnec.pt:8080/xmlui/handle/123456789/1010252 (accessed on 21 December 2022).
- Cardoso, M.A.; Silva, M.S.; Coelho, S.T.; Almeida, M.C.; Covas, D.I.C. Urban Water Infrastructure Asset Management—A Structured Approach in Four Water Utilities. Water Sci. Technol. 2012, 66, 2702–2711. [Google Scholar] [CrossRef] [PubMed]
- Okwori, E.; Pericault, Y.; Ugarelli, R.; Viklander, M.; Hedström, A. Data-Driven Asset Management in Urban Water Pipe Networks: A Proposed Conceptual Framework. J. Hydroinform. 2021, 23, 1014–1029. [Google Scholar] [CrossRef]
- Carriço, N.; Ferreira, B.; Barreira, R.; Antunes, A.; Grueau, C.; Mendes, A.; Covas, D.; Monteiro, L.; Santos, J.; Brito, I.S. Data Integration for Infrastructure Asset Management in Small to Medium-Sized Water Utilities. Water Sci. Technol. 2020, 82, 2737–2744. [Google Scholar] [CrossRef] [PubMed]
- Carriço, N.; Ferreira, B. Data and Information Systems Management for the Urban Water Infrastructure Condition Assessment. Front. Water 2021, 3, 670550. [Google Scholar] [CrossRef]
- Ferreira, B.; Carriço, N.; Barreira, R.; Dias, T.; Covas, D. Flowrate Time Series Processing in Engineering Tools for Water Distribution Networks. Water Resour. Res. 2022, 58, e2022WR032393. [Google Scholar] [CrossRef]
- Carriço, N.; Ferreira, B.; Antunes, A.; Grueau, C.I.C.; Barreira, R.; Mendes, A.; Covas, D.I.C.; Monteiro, L.; Santos, J.F.; Brito, I.S. An Information Systems for Infrastructure Asset Management Tailored to Portuguese Water Utilities: Platform Conceptualization and A Prototype Demonstration 2022. Available online: https://www.preprints.org/manuscript/202211.0295/v1 (accessed on 20 December 2022).
- Alegre, H.; Coelho, S.T.; Covas, D.I.C.; do Céu Almeida, M.; Cardoso, A. A Utility-Tailored Methodology for Integrated Asset Management of Urban Water Infrastructure. Water Sci. Technol. Water Supply 2013, 13, 1444–1451. [Google Scholar] [CrossRef]
- Cardoso, M.A.; Poças, A.; Silva, M.S.; Ribeiro, R.; Almeida, M.C.; Brito, R.S.; Coelho, S.T.; Alegre, H. Innovation Results of IAM Planning in Urban Water Services. Water Sci. Technol. 2016, 74, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Güngör, M.; Yarar, U.; Cantürk, Ü.; Fırat, M. Increasing Performance of Water Distribution Network by Using Pressure Management and Database Integration. J. Pipeline Syst. Eng. Pract. 2019, 10, 04019003. [Google Scholar] [CrossRef]
- Kanakoudis, V.K. A Troubleshooting Manual for Handling Operational Problems in Water Pipe Networks. J. Water Supply Res. Technol. Aqua 2004, 53, 109–124. [Google Scholar] [CrossRef]
- Barrela, R.; Amado, C.; Loureiro, D.; Mamade, A. Data Reconstruction of Flow Time Series in Water Distribution Systems—A New Method That Accommodates Multiple Seasonality. J. Hydroinform. 2017, 19, 238–250. [Google Scholar] [CrossRef]
- Shafiee, M.E.; Rasekh, A.; Sela, L.; Preis, A. Streaming Smart Meter Data Integration to Enable Dynamic Demand Assignment for Real-Time Hydraulic Simulation. J. Water Resour. Plan. Manag. 2020, 146, 06020008. [Google Scholar] [CrossRef]
- Grievson, O.; Holloway, T.; Johnson, B. (Eds.) A Strategic Digital Transformation for the Water Industry; IWA Publishing: London, UK, 2022; ISBN 978-1-78906-340-0. [Google Scholar]
- von Ditfurth, H.; Weisbord, E.; Danielsen, T.; Zutari, L.F.-J.; Hafemann, A.C.; Hima, J.; Oraeki, T.C. Digital Water: An Overview of the Future of Digital Water from a YWP Perspective. Available online: https://iwa-network.org/publications/digital-water-an-overview-of-the-future-of-digital-water-from-a-ywp-perspective/ (accessed on 13 September 2022).
- Karmous-Edwards, G.; Tomić, S.; Cooper, J.P. Developing a Unified Definition of Digital Twins. J. AWWA 2022, 114, 76–78. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Zanfei, A.; Brentan, B.; Montalvo, I.; Izquierdo, J. A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation. Water 2022, 14, 514. [Google Scholar] [CrossRef]
- Conejos Fuertes, P.; Martínez Alzamora, F.; Hervás Carot, M.; Alonso Campos, J.C. Building and Exploiting a Digital Twin for the Management of Drinking Water Distribution Networks. Urban Water J. 2020, 17, 704–713. [Google Scholar] [CrossRef]
- Ferreira, B.; Carriço, N.; Covas, D. Optimal Number of Pressure Sensors for Real-Time Monitoring of Distribution Networks by Using the Hypervolume Indicator. Water 2021, 13, 2235. [Google Scholar] [CrossRef]
- Gomes, S.C.; Vinga, S.; Henriques, R. Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks. Water 2021, 13, 2551. [Google Scholar] [CrossRef]
- Capelo, M.; Brentan, B.; Monteiro, L.; Covas, D. Near–Real Time Burst Location and Sizing in Water Distribution Systems Using Artificial Neural Networks. Water 2021, 13, 1841. [Google Scholar] [CrossRef]
- Cabral, M.; Loureiro, D.; Flores-Colen, I.; Covas, D. A Distress-Based Condition Assessment Approach of Urban Water Assets Using Novel Deterioration Indices. Water Resour. Manag. 2022, 36, 1075–1092. [Google Scholar] [CrossRef]
- Monteiro, L.; Algarvio, R.; Covas, D. Enhanced Water Age Performance Assessment in Distribution Networks. Water 2021, 13, 2574. [Google Scholar] [CrossRef]
- ERSAR. Water and Waste Services Quality Assessment Guide: 2nd Generation of the Assessment System; ERSAR: Lisbon, Portugal, 2017; ISBN 978-989-8360-11-3. [Google Scholar]
- Alegre, H.; Baptista, J.M.; Cabrera, E.; Cubillo, F.; Duarte, P.; Hirner, W.; Merkel, W.; Parena, R. Performance Indicators for Water Supply Services, 3rd ed.; Alegre, H., Baptista, J.M., Cabrera, E., Jr., Cubillo, F., Duarte, P., Hirner, W., Merkel, W., Parena, R., Eds.; IWA Publishing: London, UK, 2017; ISBN 978-1-84339-051-0. [Google Scholar]
- Mamade, A.; Loureiro, D.; Alegre, H.; Covas, D. A Comprehensive and Well Tested Energy Balance for Water Supply Systems. Urban Water J. 2017, 14, 853–861. [Google Scholar] [CrossRef]
- Quevedo, J.; Puig, V.; Cembrano, G.; Blanch, J.; Aguilar, J.; Saporta, D.; Benito, G.; Hedo, M.; Molina, A. Validation and Reconstruction of Flow Meter Data in the Barcelona Water Distribution Network. Control Eng. Pract. 2010, 18, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, B.; Antunes, A.; Carriço, N.; Covas, D. Multi-Objective Optimization of Pressure Sensor Location for Burst Detection and Network Calibration. Comput. Chem. Eng. 2022, 162, 107826. [Google Scholar] [CrossRef]
- Ferreira, B.; Antunes, A.; Carriço, N.; Covas, D. Comparison of Model-Based Techniques for Pipe Burst Location in Water Distribution Networks. IOP Conf. Ser. Earth Environ. Sci. 2023, 1136, 012039. [Google Scholar] [CrossRef]
- Caetano, J.; Carriço, N.; Covas, D. Lessons Learnt from the Application of MCDA Sorting Methods to Pipe Network Rehabilitation Prioritization. Water 2022, 14, 736. [Google Scholar] [CrossRef]
- Pedersen, A.N.; Borup, M.; Brink-Kjær, A.; Christiansen, L.E.; Mikkelsen, P.S. Living and Prototyping Digital Twins for Urban Water Systems: Towards Multi-Purpose Value Creation Using Models and Sensors. Water 2021, 13, 592. [Google Scholar] [CrossRef]
- Shao, Y.; Chu, S.; Zhang, T.; Yang, Y.J.; Yu, T. Real-Time Water Distribution System Hydraulic Modeling Using Prior Demand Information by Formal Bayesian Approach. J Water Resour. Plan. Manag. 2019, 145, 04019059. [Google Scholar] [CrossRef] [PubMed]
- Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.R.; Adedeji, K.B.; Anele, A.O.; Todini, E. Real-Time Dynamic Hydraulic Model of Water Distribution Networks. Water 2019, 11, 470. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, W.; Xin, K.; Yan, H.; Tao, T. Self-Adaptive Calibration of Real-Time Demand and Roughness of Water Distribution Systems. Water Resour. Res. 2018, 54, 5536–5550. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, D.; Chen, B.; Chen, W.; Shen, D. Review of Model-Based and Data-Driven Approaches for Leak Detection and Location in Water Distribution Systems. Water Supply 2021, 21, 3282–3306. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S. A Review of Data-Driven Approaches for Burst Detection in Water Distribution Systems. Urban Water J. 2017, 14, 972–983. [Google Scholar] [CrossRef]
- Ng, J.H.; Seah, H.; Pang, C.M. Digitalising Water—Sharing Singapore’s Experience; IWA Publishing: London, UK, 2020. [Google Scholar]
- Pesantez, J.E.; Alghamdi, F.; Sabu, S.; Mahinthakumar, G.; Berglund, E.Z. Using a Digital Twin to Explore Water Infrastructure Impacts during the COVID-19 Pandemic. Sustain. Cities Soc. 2022, 77, 103520. [Google Scholar] [CrossRef] [PubMed]
R&D Project | Computational Tool |
---|---|
DECIdE | Data integration and analytics platform |
WISDom | Flow rate time series processing |
Optimal number and location of pressure sensors | |
Identification of critical areas for pipe burst location | |
Prioritization of rehabilitation units for interventions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carriço, N.; Ferreira, B.; Antunes, A.; Caetano, J.; Covas, D. Computational Tools for Supporting the Operation and Management of Water Distribution Systems towards Digital Transformation. Water 2023, 15, 553. https://doi.org/10.3390/w15030553
Carriço N, Ferreira B, Antunes A, Caetano J, Covas D. Computational Tools for Supporting the Operation and Management of Water Distribution Systems towards Digital Transformation. Water. 2023; 15(3):553. https://doi.org/10.3390/w15030553
Chicago/Turabian StyleCarriço, Nelson, Bruno Ferreira, André Antunes, João Caetano, and Dídia Covas. 2023. "Computational Tools for Supporting the Operation and Management of Water Distribution Systems towards Digital Transformation" Water 15, no. 3: 553. https://doi.org/10.3390/w15030553
APA StyleCarriço, N., Ferreira, B., Antunes, A., Caetano, J., & Covas, D. (2023). Computational Tools for Supporting the Operation and Management of Water Distribution Systems towards Digital Transformation. Water, 15(3), 553. https://doi.org/10.3390/w15030553