Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Microalgae Species
2.2. Synthesis of Bare Iron Oxide and Citrate-Coated Iron Oxide
2.3. Synthesis of Amine-Functionalized Iron Oxide
2.4. Synthesis of (Polydiallyldimethylammonium Chloride) PDDA-Coated Iron Oxide
2.5. Characterization of Synthesized Magnetic Nanoparticles
2.6. Microalgal Cell Harvesting Process
3. Results
3.1. Magnetic Nanoparticle Properties
3.2. Microalgal Cell Collection by Sedimentation and Auto-Flocculation
3.3. Microalgal Cell Collection by Flocculation and Magnetic Separation of Nanoparticles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delrue, F.; Setier, P.A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.K. An economic, sustainability and energetic model of biodiesel production from microalgae. Bioresour. Technol. 2012, 111, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Rawat, I.; Ranjith, K.R.; Mutanda, T.F.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energ. 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.I.; Hwang, J.H.; Cho, Y.; Min, B.; Jeon, B.H. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energy 2011, 88, 3300–3306. [Google Scholar] [CrossRef]
- Basu, S.; Roy, A.S.; Mohanty, K.; Ghoshal, A.K. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour. Technol. 2013, 143, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mishra, S.K.; Choi, G.G.; Yang, J.W. CO2 sequestration through algal biomass production. In Algal Biorefinery: An Integrated Approach, 1st ed.; Das, D., Ed.; Springer: New York, NY, USA, 2015; pp. 35–58. [Google Scholar]
- Wen, X.; Du, K.; Wang, Z.; Peng, X.; Luo, L.; Tao, H.; Xu, Y.; Zhang, D.; Geng, Y.; Li, Y. Effective cultivation of microalgae for biofuel production: A pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol. Biofuels 2016, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Woertz, I.; Feffer, A.; Lundquist, T.; Nelson, Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Chem. Eng. 2009, 135, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Shao, S.; He, Y.; Luo, Q.; Zheng, M.; Zheng, M.; Chen, B.; Wang, M. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour. Technol. 2020, 302, 122806. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Draaisma, R.B.; Wijffels, R.H.; Slegers, P.M.; Brentner, L.B.; Roy, A.; Barbosa, M.J. Food commodities from microalgae. Curr. Opin. Biotech. 2013, 24, 169–177. [Google Scholar] [CrossRef]
- Abdelaziz, A.E.M.; Leite, G.B.; Hallenbeck, P.C. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ. Technol. 2013, 34, 1807–1836. [Google Scholar] [CrossRef]
- Al hattab, M.; Ghaly, A.; Hammouda, A. Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis. J. Fundam. Renew. Energy Appl. 2015, 5, 154. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Das, D. Improvement of harvesting technology for algal biomass production. In Algal Biorefinery: An Integrated Approach, 1st ed.; Das, D., Ed.; Springer: New York, NY, USA, 2015; pp. 169–194. [Google Scholar]
- Xu, Y.; Milledge, J.J.; Abubakar, A.; Swamy, R.A.R.; Bailey, D.; Harvey, P.J. Effects of centrifugal stress on cell disruption and glycerol leakage from Dunaliella salina. Microalgae Biotechnol. 2015, 1, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.S.; Zhou, Y.; Martarella, R.; Wang, Z.; Rittmann, B.E. Synergistic integration of C12–C16 cationic surfactants for flocculation and lipid extraction from Chlorella Biomass. ACS Sustain. Chem. Eng. 2017, 5, 752–757. [Google Scholar] [CrossRef]
- Li, T.; Hu, J.J.; Zhu, L.D. Self-Flocculation as an Efficient Method to Harvest Microalgae: A Mini-Review. Water. 2021, 13, 2585. [Google Scholar] [CrossRef]
- ’t Lam, G.P.; Zegeye, E.K.; Vermuë, M.H.; Kleinegris, D.M.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G. Dosage effect of cationic polymers on the flocculation efficiency of the marine microalga Neochloris oleoabundans. Bioresour. Technol. 2015, 198, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.R.; Guo, C.; Wang, F.; Wang, S.K.; Pan, F.; Liu, C.Z. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem. Eng. J. 2014, 242, 341–347. [Google Scholar] [CrossRef]
- Gerchman, Y.; Vasker, B.; Tavasi, M.; Mishael, Y.; Kinel-Tahan, Y.; Yehoshua, Y. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Bioresour. Technol. 2017, 228, 141–161. [Google Scholar] [CrossRef]
- Matter, I.A.; Bui, V.K.H.; Jung, M.; Seo, J.Y.; Kim, Y.E.; Lee, Y.C.; Oh, Y.K. Flocculation harvesting techniques for microalgae: A review. Appl. Sci. 2019, 9, 3069. [Google Scholar] [CrossRef] [Green Version]
- Chu, F.J.; Wan, T.J.; Chen, H.; Wu, C.H.; Kao, P.M. Magnetophoretic Harvesting of Nannochloropsis oculata Using Iron Oxide Immobilized Beads. Water 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Abo Markeb, A.; Llimos-Turet, J.; Ferrer, I.; Blanquez, P.; Alonso, A.; Sanchez, A.; Moral-Vico, J.; Font, X. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 2019, 159, 490–500. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, Y.; Huang, W.; Zhang, C.; Li, T.; Zhang, Y.; Li, A. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 2012, 110, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Yang, S.; Lee, S. Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis. Desalination 2014, 347, 34–42. [Google Scholar] [CrossRef]
- Kralj, S.; Makovec, D.; Čampelj, S.; Drofenik, D. Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J. Magn. Magn. Mater. 2010, 322, 1847–1853. [Google Scholar] [CrossRef]
- Čampelj, S.; Makovec, D.; Drofenik, D. Functionalization of magnetic nanoparticles with 3-aminopropylsilane. J. Magn. Magn. Mater. 2009, 321, 1346–1350. [Google Scholar] [CrossRef]
- Sukhorukov, G.B.; Donath, E.; Davis, S.; Lichtenfeld, H.; Caruso, F.; Popov, V.I.; Möhwald, H. Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polym. Adv. Technol. 1998, 9, 759–767. [Google Scholar] [CrossRef]
- Caruso, F.; Lichtenfeld, H.; Donath, E.; Möhwald, H. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules. 1999, 32, 2317–2328. [Google Scholar] [CrossRef]
- Yu, C.J.; Lin, C.Y.; Liu, C.H.; Cheng, T.L.; Tseng, W.L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosens. Bioelectron. 2010, 26, 913–917. [Google Scholar] [CrossRef]
- Pereira, H.; Gangadhar, K.N.; Schulze, P.S.C.; Santos, T.; de Sousa, C.B.; Schueler, L.M.; Custódio, L.; Malcata, F.X.; Gouveia, L.; Varela, J.C.S.; et al. Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci. Rep. 2016, 6, 35663. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Gao, S.; Lopez, P.A.; Ogden, K.L. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 2017, 28, 192–199. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Fraeye, I.; Meesschaert, B.; Muylaert, K. Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresour. Technol. 2012, 105, 114–119. [Google Scholar] [CrossRef]
- Liu, J.; Tao, Y.; Wu, J.; Zhu, Y.; Gao, B.; Tang, Y.; Li, A.; Zhang, C.; Zhang, Y. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease. Bioresour. Technol. 2014, 167, 367–375. [Google Scholar] [CrossRef]
- Fraga-García, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: From interaction behavior to process realization. Nanomaterials 2018, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Muylaert, K.; Bastiaens, L.; Vandamme, D.; Gouveia, L. Harvesting of microalgae: Overview of process options and their strengths and drawbacks. In Microalgae-Based Biofuels and Bioproducts, 1st ed.; Muñoz, R., Gonzalez-Fernandez, C., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 113–132. [Google Scholar]
- Hu, Y.R.; Guo, C.; Ling, X.; Wang, F.; Wang, S.K.; Hu, Z.; Liu, C.Z. A magnetic separator for efficient microalgae harvesting. Bioresour. Technol. 2014, 158, 388–391. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Yadav, G.; Sen, R.K. Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J. CO2 Util. 2017, 17, 188–206. [Google Scholar] [CrossRef]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front. Bioeng. Biotechnol. 2019, 7, 42–53. [Google Scholar] [CrossRef]
Salinity | Settling Time | Initial A600nm | Final A600nm | Cell Harvesting Efficiency (%) |
---|---|---|---|---|
10‰ (pH 10.13) | 0.5 h | 3.888 | 2.451 | 36.96% |
33‰ (pH10.21) | 3.835 | 2.389 | 37.71% | |
10‰ (pH 10.13) | 18 h | 3.888 | 0.236 | 93.93% |
33‰ (pH 10.21) | 3.835 | 0.687 | 82.09% |
Salinity | pH Adjusted | Settling Time | Initial A600nm | Final A600nm | Cell Harvesting Efficiency (%) |
---|---|---|---|---|---|
10‰ | 3 | 0.5 h | 3.917 | 1.374 | 64.92% |
33‰ | 3 | 3.767 | 2.600 | 30.98% | |
10‰ | 5 | 4.002 | 2.377 | 40.60% | |
33‰ | 5 | 4.022 | 2.581 | 35.83% | |
10‰ | 7 | 3.996 | 2.468 | 38.24% | |
33‰ | 7 | 4.014 | 2.666 | 33.58% | |
10‰ | 10 | 4.016 | 2.525 | 37.13% | |
33‰ | 10 | 4.008 | 2.716 | 32.23% | |
10‰ | 11.5 | 4.241 | 3.540 | 16.53% | |
33‰ | 11.5 | 4.036 | 3.391 | 15.98% | |
10‰ | 3 | 18 h | 3.917 | 0.015 | 99.61% |
33‰ | 3 | 3.767 | 0.126 | 96.66% | |
10‰ | 5 | 4.002 | 0.096 | 97.60% | |
33‰ | 5 | 4.022 | 0.159 | 96.05% | |
10‰ | 7 | 3.996 | 0.141 | 96.47% | |
33‰ | 7 | 4.014 | 0.949 | 76.36% | |
10‰ | 10 | 4.016 | 0.505 | 87.43% | |
33‰ | 10 | 4.008 | 0.877 | 78.12% | |
10‰ | 11.5 | 4.241 | 0.003 | 99.93% | |
33‰ | 11.5 | 4.036 | 0.009 | 99.78% |
Magnetic Nanoparticles | Salinity | Magnetic Nanoparticles Added (mL) | Magnetic Separation Time (s) | Initial A600nm | Final A600nm | Cell Harvesting Efficiency (%) |
---|---|---|---|---|---|---|
Control (5 mL cells culture alone) | 10‰ | / | / | 4.089 | 4.389 | / |
Control (5 mL cells culture alone) | 33‰ | / | / | 3.881 | 3.881 | / |
8 mg Bare Fe3O4 | 10‰ | 0.106 | 45 | 4.089 | 3.066 | 25.02 |
8 mg Bare Fe3O4 | 33‰ | 0.106 | 45 | 3.881 | 3.182 | 18.01 |
16 mg NH2-Fe3O4 | 10‰ | 0.205 | 45 | 4.089 | 2.395 | 41.43 |
16 mg NH2-Fe3O4 | 33‰ | 0.205 | 45 | 3.881 | 2.630 | 32.23 |
16 mg citrate-80C-Fe3O4 | 10‰ | 0.125 | 45 | 4.089 | 1.632 | 60.09 |
16 mg citrate-80C-Fe3O4 | 33‰ | 0.125 | 45 | 3.881 | 1.854 | 52.23 |
8 mg PDDA-Fe3O4 | 10‰ | 0.127 | 45 | 4.089 | 0.136 | 96.67 |
8 mg PDDA-Fe3O4 | 33‰ | 0.127 | 45 | 3.881 | 1.797 | 53.70 |
Type of Magnetic Nanoparticles | Zeta Potential (mV) | pH |
---|---|---|
Bare Fe3O4 | −19.3 | 8.03 |
NH2-Fe3O4 | 21.3 | 7.90 |
citrate-80C-Fe3O4 | −21.5 | 8.11 |
PDDA-Fe3O4 | 36.9 | 7.45 |
Cell Collection Methods | pH Effect | Salinity Effect | Processing Time | Cell Harvesting Efficiency | Energy Consumption |
---|---|---|---|---|---|
Sedimentation | No | No | Long | Low to moderate | Low |
Auto-flocculation | Yes | Yes | Long | Moderate to high | Low |
Centrifugation | No | No | Very short | Very high | High |
Flocculation-magnetic separation | Yes | Yes | Very short | Very high | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, K.-S.; Leung, S.-K.; Wong, S.S.-Y.; Chan, S.-S.; Suen, D.W.-S.; Tsang, C.-W.; Chan, C.-Y. Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites. Water 2023, 15, 545. https://doi.org/10.3390/w15030545
Chan K-S, Leung S-K, Wong SS-Y, Chan S-S, Suen DW-S, Tsang C-W, Chan C-Y. Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites. Water. 2023; 15(3):545. https://doi.org/10.3390/w15030545
Chicago/Turabian StyleChan, Kwan-Shing, Shu-Kei Leung, Sammie Sum-Yi Wong, Shui-Shing Chan, Dawson Wai-Shun Suen, Chi-Wing Tsang, and Cho-Yin Chan. 2023. "Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites" Water 15, no. 3: 545. https://doi.org/10.3390/w15030545
APA StyleChan, K.-S., Leung, S.-K., Wong, S. S.-Y., Chan, S.-S., Suen, D. W.-S., Tsang, C.-W., & Chan, C.-Y. (2023). Development of an Energy-Efficient Rapid Microalgal Cell-Harvesting Method Using Synthesized Magnetic Nanocomposites. Water, 15(3), 545. https://doi.org/10.3390/w15030545