Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgae and Bacteria Strain
2.2. Experiments Design
2.3. Analytical Methods
2.3.1. Biofloc Development Analysis
2.3.2. Water Quality Analysis
2.3.3. Bacterial Community Analysis
2.4. Statistical Analysis
3. Results
3.1. Biofloc Formation Differences under Different C. pyrenoidosa Concentration
3.2. Change in Water Quality under Different C. pyrenoidosa Concentration
3.3. Dynamic Structure of the Bacterial Community under Different C. pyrenoidosa Concentration
4. Discussion
4.1. Influence of C. pyrenoidosa on Biofloc Development
4.2. Influence of C. pyrenoidosa on Water Quality
4.3. Influence of C. pyrenoidosa on Bacterial Community
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, H.; Wei, H.; Zhu, X.; Han, D.; Jin, J.; Yang, Y.; Xie, S. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture 2019, 506, 256–269. [Google Scholar] [CrossRef]
- Kumar, V.S.; Pandey, P.K.; Anand, T.; Bhuvaneswari, G.R.; Dhinakaran, A.; Kumar, S. Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ. Manag. 2018, 215, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Song, J.; Rajeev, M.; Kim, S.K.; Kang, I.; Jang, I.-K.; Cho, J.-C. Exploring bacterioplankton communities and their temporal dynamics in the rearing water of a biofloc-based shrimp (Litopenaeus vannamei) aquaculture system. Front. Microbiol. 2022, 13, 995699. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, A.; Liao, S. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture 2020, 515, 734492. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z.Y.; Qu, Z.H.; Zhu, R.; Li, D.L.; Wang, H.T.; Wei, X.F.; Shang, G.J.; Wu, L.F. Alleviative effect of biofloc technology (BFT) on extruded soybean meal (ESBM)-induced growth inhibition and intestinal barrier dysfunction in Rhynchocypris lagowskii. Aquaculture 2022, 561, 738677. [Google Scholar] [CrossRef]
- Robles-Porchas, G.R.; Gollas-Galván, T.; Martínez-Porchas, M.; Martínez-Cordova, L.R.; Miranda-Baeza, A.; Vargas-Albores, F. The nitrification process for nitrogen removal in biofloc system aquaculture. Rev. Aquacult. 2020, 12, 2228–2249. [Google Scholar] [CrossRef]
- Wang, G.; Yu, E.; Xie, J.; Yu, D.; Li, Z.; Luo, W.; Qiu, L.; Zheng, Z. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture 2015, 443, 98–104. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Jiang, F.; Hu, Z.; Zheng, Y. Performance of Platymonas and microbial community analysis under different C/N ratio in biofloc technology aquaculture system. J. Water Process Eng. 2021, 43, 102257. [Google Scholar] [CrossRef]
- Yunos, F.H.M.; Nasir, N.M.; Jusoh, H.H.W.; Khatoon, H.; Lam, S.S.; Jusoh, A. Harvesting of microalgae (Chlorella sp.) from aquaculture bioflocs using an environmental-friendly chitosan-based bio-coagulant. Int. Biodeterior. Biodegr. 2017, 124, 243–249. [Google Scholar] [CrossRef]
- Galvez, A.O.; Santos, Í.G.; Ferreira-Marinho, Y.; Vinatea, L. Plankton communities in shrimp monoculture, integrated biofloc bystem. Glob. Aquac. Advocate 2015, 18, 36–38. [Google Scholar]
- Manan, H.; Moh, J.H.Z.; Kasan, N.A.; Suratman, S.; Ikhwanuddin, M. Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl. Water Sci. 2016, 7, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, N.; Kucuker, M.A.; Kuchta, K. Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour. Technol. 2015, 194, 130–136. [Google Scholar] [CrossRef]
- Abakari, G.; Wu, X.; He, X.; Fan, L.; Luo, G. Bacteria in biofloc technology aquaculture systems: Roles and mediating factors. Rev. Aquac. 2021, 14, 1260–1284. [Google Scholar] [CrossRef]
- Ogello, E.O.; Outa, N.O.; Obiero, K.O.; Kyule, D.N.; Munguti, J.M. The prospects of biofloc technology (BFT) for sustainable aquaculture development. Sci. Afr. 2021, 14, e01053. [Google Scholar] [CrossRef]
- Hende, S.V.D.; Vervaeren, H.; Saveyn, H.; Maes, G.; Boon, N. Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnol. Bioeng. 2011, 108, 549–558. [Google Scholar] [CrossRef]
- Loria, M.H.; Wells, G.F.; Rhoads, K.R. Influence of algal strain on microalgal-bacterial bioflocculation rate and floc characteristics. J. Appl. Phycol. 2021, 33, 777–784. [Google Scholar] [CrossRef]
- Jiménez-Ordaz, F.J.; Cadena-Roa, M.A.; Pacheco-Vega, J.M.; Rojas-Contreras, M.; Tovar-Ramírez, D.; Arce-Amezquita, P.M. Microalgae and probiotic bacteria as biofloc inducers in a hyper-intensive Pacific white shrimp (Penaeus vannamei) culture. Lat. Am. J. Aquat. Res. 2021, 49, 155–168. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Zhao, C.; Huang, F.; Deng, L.; Wang, W. Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation. Bioresour. Technol. 2018, 268, 300–307. [Google Scholar] [CrossRef]
- Wang, H.; Qi, B.; Jiang, X.; Jiang, Y.; Yang, H.; Xiao, Y.; Jiang, N.; Deng, L.; Wang, W. Microalgal interstrains differences in algal-bacterial biofloc formation during liquid digestate treatment. Bioresour. Technol. 2019, 289, 121741. [Google Scholar] [CrossRef]
- Reis, W.G.; Wasielesky, W., Jr.; Abreu, P.C.; Brandão, H.; Krummenauer, D. Rearing of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in BFT system with different photoperiods: Effects on the microbial community, water quality and zootechnical performance. Aquaculture 2019, 508, 19–29. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; SRAC Publication: Mississippi, MS, USA, 2013. [Google Scholar]
- Lou, G.; Xu, J.; Li, J.; Zheng, H.; Tan, H.; Liu, W. Rapid production bioflocs by inoculation and fertilized with different nitrogen and carbon sources. Aquacult. Eng. 2022, 98, 102262. [Google Scholar] [CrossRef]
- Taufikurahman, T.; Shafira, H. Biomass production enhancement and protein quantification in Chlorella vulgaris and Chlorella pyrenoidosa cultivated in bioslurry using different LED types. In Proceedings of the Joint Symposium on Plant Scienes and Products, Bandung, Indonesia, 1–2 August 2019. [Google Scholar] [CrossRef]
- Zhou, Y.; Ying, L.; Ge, J.; Wang, W.; Chen, Y.; Montagnes, D. Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress. Bioresour. Technol. 2010, 101, 8336–8341. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, B.; Xu, J.; Sheng, J.; Shi, Y. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. J. Food Eng. 2007, 80, 997–1001. [Google Scholar] [CrossRef]
- Maksimova, I.V.; Bratkovskaia, L.B.; Plekhanov, S.E. Extracellular Carbohydrates and Polysaccharides of the Alga Chlorella pyrenoidosa Chick S-39. Biol. Bull. 2004, 31, 217–224. [Google Scholar] [CrossRef]
- Yang, L.; Tan, X.; Li, D.; Chu, H.; Zhou, X.; Zhang, Y.; Yu, H. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresour. Technol. 2015, 181, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, Z.; Wei, D.; Chen, W.; Xie, J. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. Bioresour. Technol. 2021, 333, 125151. [Google Scholar] [CrossRef]
- Luo, G.; Wang, J.; Ma, N.; Liu, Z.; Tan, H. Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production. J. Microbiol. Biotechnol. 2016, 26, 1420–1427. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Abakari, G.; Tan, H.; Liu, W.; Luo, G. Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture 2022, 566, 739216. [Google Scholar] [CrossRef]
- Yusufi, M.W.; Utomo, N.B.P.; Yuhana, M. Growth performance of Catfish (Clarias gariepinus) in biofloc-based super intensive culture added with Bacillus sp. J. Fish. Aquat. Sci. 2015, 10, 523–532. [Google Scholar] [CrossRef]
- Bakhshi, F.; Najdegerami, E.H.; Manaffar, R.; Tukmechi, A.; Farah, K.R. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2017, 484, 259–267. [Google Scholar] [CrossRef]
- Avnimelech, Y. Biofloc Technology: A Practical Guide Book, 2nd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2012. [Google Scholar]
- Ji, X.; Jiang, M.; Zhang, J.; Jiang, X.; Zheng, Z. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresour. Technol. 2017, 247, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquacult. Eng. 2006, 34, 344–363. [Google Scholar] [CrossRef]
- Araújo, M.; Braga, T.; Cisneros, S.V.; Silva, S.; Galvez, A.O.; Correia, E. The intensive culture of Nile tilapia supplemented with the microalgae Chlorella vulgaris in a biofloc system. Bol. Inst. Pesca 2019, 45, e398. [Google Scholar] [CrossRef]
- Ekasari, J.; Nugroho, U.A.; Fatimah, N.; Angela, D.; Hastuti, Y.P.; Pande, G.S.J.; Natrah, F.M.I. Improvement of biofloc quality and growth of Macrobrachium rosenbergii in biofloc systems by Chlorella addition. Aquacult. Int. 2021, 29, 2305–2317. [Google Scholar] [CrossRef]
- Godoy, L.C.; Odebrecht, C.; Ballester, E.; Martins, T.G., Jr.; Wasielesky, W. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquacult. Int. 2012, 20, 559–569. [Google Scholar] [CrossRef]
- Oliveira, C.Y.B.; Oliveira, C.D.L.; Prasad, R.; Ong, H.C.; Araujo, E.S.; Shabnam, N.; Gálvez, A.O. A multidisciplinary review of Tetradesmus obliquus: A microalga suitable for large-scale biomass production and emerging environmental applications. Rev. Aquacult. 2021, 13, 1594–1618. [Google Scholar] [CrossRef]
- Angela, D.; Arbi, S.; Natrah, F.M.; Widanarni, W.; Pande, G.S.J.; Ekasari, J. Evaluation of Chlorella sp. and Ankistrodesmus sp. addition on biofloc system performance in giant prawn culture. Aquac. Res. 2021, 52, 6052–6062. [Google Scholar] [CrossRef]
- Tan, X.B.; Yang, L.B.; Zhang, Y.L.; Zhao, F.C.; Chu, H.Q.; Guo, J. Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge. Bioresour. Technol. 2015, 198, 340–350. [Google Scholar] [CrossRef]
- Vinatea, L.; Malpartida, J.; Carbó, R.; Andree, K.B.; Gisbert, E.; Estévez, A. A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture 2018, 482, 155–161. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Liu, Q.; Xu, G.; Tan, H. Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and biofilm carrier. Bioresour. Technol. 2014, 171, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ojeda, Y.; Collazos-Lasso, L.F.; Arias-Castellanos, J.A. Dynamics and use of nitrogen in biofloc technology—BFT. AACL Bioflux 2018, 11, 1107–1129. [Google Scholar]
- Feng, S.; Liu, F.; Zhu, S.; Feng, P.; Wang, Z.; Yuan, Z.; Shang, C.; Chen, H. Performance of a microalgal-bacterial consortium system for the treatment of dairy-derived liquid digestate and biomass production. Bioresour. Technol. 2020, 306, 123101. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Liang, J.; Wang, L.; Markou, G.; Jia, Q. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology. Bioresour. Technol. 2017, 252, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Boada, E.; Santos-Clotas, E.; Cabrera-Codony, A.; Martín, M.J.; Gich, F. The core microbiome is responsible for volatile silicon and organic compounds degradation during anoxic lab scale biotrickling filter performance. Sci. Total Environ. 2021, 798, 149162. [Google Scholar] [CrossRef]
- Huang, H.H.; Li, C.Y.; Lei, Y.J.; Kuang, W.Q.; Zou, W.S.; Yang, P.H. Bacterial composition and inferring function profiles in the biofloc system rearing Litopenaeus vannamei postlarvae at a low salinity. Israeli. J. Aquac.-Bamidgeh. 2022, 74, 1681710. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Qi, Z.; Wang, W. Constructed microalgal-bacterial symbiotic (MBS) system: Classification, performance, partnerships and perspectives. Sci. Total Environ. 2022, 803, 150082. [Google Scholar] [CrossRef]
- Xiao, Y.; Shen, Y.; Ji, B. Cultivation of microalgal-bacterial granular sludge from activated sludge via granule inoculation: Performance and microbial community. J. Clean. Prod. 2022, 380, 134875. [Google Scholar] [CrossRef]
- Deng, M.; Li, L.; Dai, Z.; Senbati, Y.; Song, K.; He, X. Aerobic denitrification affects gaseous nitrogen loss in biofloc-based recirculating aquaculture system. Aquaculture 2020, 529, 735686. [Google Scholar] [CrossRef]
- Huang, L.; Guo, H.; Chen, C.; Huang, X.; Chen, W.; Bao, F.; Liu, W.; Wang, S.; Zhang, D. The bacteria from large-sized bioflocs are more associated with the shrimp gut microbiota in culture system. Aquaculture 2020, 523, 735159. [Google Scholar] [CrossRef]
- Oh, H.M.; Lee, S.J.; Park, M.H.; Kim, H.S.; Kim, H.C.; Yoon, J.H.; Yoon, K. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 2001, 23, 1229–1234. [Google Scholar] [CrossRef]
- Kundu, P.; Pramanik, A.; Dasgupta, A.; Mukherjee, S.; Mukherjee, J. Simultaneous heterotrophic nitrification and aerobic denitrification by Chryseobacterium sp. R31 isolated from abattoir wastewater. BioMed Res. Int. 2014, 2014, 436056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Sun, Q.; Zhao, C.; Wen, D.; Tang, X. Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp. strain. Biodegradation 2010, 21, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; Zhao, J.; Zhang, Z.; Fan, X. Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. Bioresour. Technol. 2021, 341, 125859. [Google Scholar] [CrossRef]
- O’Donnell, S.T.; Rittmann, B.E.; Kavazanjian, E. Factors controlling microbially induced desaturation and precipitation (MIDP) via denitrification during continuous Flow. Geomicrobiol. J. 2019, 36, 543–558. [Google Scholar] [CrossRef]
- Sáez, F.; Pozo, C.; Gómez, M.A.; Martínez-Toledo, M.V.; Rodelas, B.; Gónzalez-López, J. Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl. Microbiol. Biotechnol. 2006, 71, 563–567. [Google Scholar] [CrossRef] [PubMed]
Treatments | A | B | C | D | E |
---|---|---|---|---|---|
C. pyrenoidosa (cells·L−1) | 1 × 108 | 1 × 109 | 5 × 109 | 1 × 1010 | 0 |
B. subtilis (CFU·mL−1) | 2 × 107 | 2 × 107 | 2 × 107 | 2 × 107 | 2 × 107 |
Volume (L) | 3 | 3 | 3 | 3 | 3 |
C/N | 15 | 15 | 15 | 15 | 15 |
Treatments | pH | DO (mg·L−1) | Temperature (°C) |
---|---|---|---|
A | 8.38 ± 0.35 | 5.84 ± 1.37 | 25.19 ± 0.32 |
B | 8.55 ± 0.30 | 6.46 ± 0.94 | 25.28 ± 0.24 |
C | 8.46 ± 0.42 | 6.77 ± 1.14 | 25.34 ± 0.20 |
D | 8.56 ± 0.37 | 6.25 ± 0.78 | 25.32 ± 0.39 |
E | 8.37 ± 0.34 | 5.55 ± 1.13 | 24.32 ± 0.49 |
Time | Sample | OTUs | Richness | Diversity | ||
---|---|---|---|---|---|---|
Chao 1 | Ace | Shannon | Simpson | |||
1d | A | 1006.67 ± 52.54 | 1405.67 ± 69.37 | 1871.00 ± 87.68 | 2.89 ± 0.17 | 0.12 ± 0.01 |
B | 1421.00 ± 48.08 | 1988.50 ± 86.97 | 2084.00 ± 43.84 | 3.18 ± 0.29 | 0.12 ± 0.01 | |
C | 1272.00 ± 59.40 | 1662.67 ± 118.37 | 1905.00 ± 37.64 | 3.35 ± 0.15 | 0.09 ± 0.01 | |
D | 1019.50 ± 96.87 | 1796.00 ± 100.41 | 1922.00 ± 179.61 | 3.48 ± 0.20 | 0.08 ± 0.01 | |
E | 2556.00 ± 115.97 | 3651.00 ± 224.86 | 3531.67 ± 364.53 | 3.64 ± 0.18 | 0.10 ± 0.01 | |
7d | A | 990.00 ± 123.04 | 1592.00 ± 96.17 | 1697.50 ± 164.76 | 3.55 ± 0.04 | 0.09 ± 0.01 |
B | 1441.67 ± 94.73 | 2007.67 ± 109.04 | 2158.67 ± 130.60 | 3.33 ± 0.31 | 0.17 ± 0.01 | |
C | 1350.67 ± 36.46 | 1947.33 ± 79.12 | 2508.67 ± 76.87 | 3.64 ± 0.24 | 0.06 ± 0.01 | |
D | 1297.50 ± 36.06 | 2035.00 ± 104.65 | 2745.67 ± 242.84 | 3.63 ± 0.24 | 0.08 ± 0.00 | |
E | 3290.67 ± 240.78 | 4200.33 ± 107.30 | 4350.00 ± 120.39 | 4.77 ± 0.19 | 0.06 ± 0.00 | |
13d | A | 1543.00 ± 183.85 | 2040.50 ± 293.45 | 2207.50 ± 300.52 | 3.23 ± 0.31 | 0.19 ± 0.01 |
B | 1466.33 ± 77.91 | 1956.33 ± 87.81 | 2143.67 ± 90.18 | 3.30 ± 0.29 | 0.16 ± 0.01 | |
C | 1716.00 ± 50.91 | 2336.67 ± 203.01 | 2504.33 ± 208.71 | 4.10 ± 0.21 | 0.07 ± 0.01 | |
D | 2385.00 ± 168.29 | 3114.00 ± 290.56 | 3759.67 ± 370.09 | 3.85 ± 0.21 | 0.10 ± 0.00 | |
E | 3626.00 ± 113.37 | 4568.67 ± 37.45 | 4700.33 ± 66.91 | 5.32 ± 0.31 | 0.04 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Fu, Z.; Shen, Z.; Zhang, R.; Zhao, J.; Zhang, Y.; Xu, Q. Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way. Water 2023, 15, 536. https://doi.org/10.3390/w15030536
Chen Y, Fu Z, Shen Z, Zhang R, Zhao J, Zhang Y, Xu Q. Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way. Water. 2023; 15(3):536. https://doi.org/10.3390/w15030536
Chicago/Turabian StyleChen, Yang, Zhichao Fu, Zhenyi Shen, Rongfei Zhang, Jianhua Zhao, Yixiang Zhang, and Qiyou Xu. 2023. "Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way" Water 15, no. 3: 536. https://doi.org/10.3390/w15030536