Does the Nature of Floods Matter in the Risk Perception of Households? A Comparative Assessment among the Rural Households Prone to Flash and Riverine Floods in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Selection
2.2. Sampling Method and Data Collection Procedure
2.3. Developing an Index for Risk Perception
2.4. Indicators and Related Weights
3. Results
3.1. Socio-Economic Profile
3.2. Analysis of Risk Perception Indicators for Riverine and Flash Flood
3.3. Comparison of Impacts of Riverine Floods and Flash Floods
4. Discussion
5. Limitations and Strengths of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CRED. 2021 Disasters in Numbers; CRED: Brussels, Belgium, 2022. [Google Scholar]
- MunichRe. Risk from Floods, Storm Surges and Flash Floods. Munich Re 2022. Available online: https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/floods-and-flash-floods-underestimated-natural-hazards.html (accessed on 1 June 2022).
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slalyback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- Hallegatte, S.; Vogt-Schilb, A.; Bangalore, M.; Rozenberg, J. Unbreakable: Building the Resilience of the Poor in the Face of Natural Disasters; World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef][Green Version]
- Ceola, S.; Laio, F.; Montanari, A. Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys. Res. Lett. 2014, 41, 7184–7190. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Jongman, B.; Winsemius, H.C.; Aerts, J.C.J.H.; de Perez, E.C.; van Aalst, M.K.; Kron, W.; Ward, P.J. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl. Acad. Sci. USA 2015, 112, E2271–E2280. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ward, P.J.; Jongman, B.; Aerts, J.C.J.H.; Bates, P.D.; Botzen, W.J.W.; Loaiza, A.D.; Hallegatte, S.; Kind, J.M.; Kwadijk, J.; Scussolini, P.; et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang. 2017, 7, 642–646. [Google Scholar] [CrossRef][Green Version]
- Alfieri, L.; Cohen, S.; Galantowicz, J.; Schumann, G.J.-P.; Trigg, M.A.; Zsoter, E.; Prudhomme, C.; Kruczkiewicz, A.; de Perez, E.C.; Flamig, Z.; et al. A global network for operational flood risk reduction. Environ. Sci. Policy 2018, 84, 149–158. [Google Scholar] [CrossRef]
- François, B.; Schlef, K.E.; Wi, S.; Brown, C.M. Design considerations for riverine floods in a changing climate—A review. J. Hydrol. 2019, 574, 557–573. [Google Scholar] [CrossRef]
- White, G. Human Adjustment to Floods. Ph.D. Thesis, The University of Chicago, Chicago, IL, USA, 1945. [Google Scholar]
- Myers, C.A.; Slack, T.; Singelmann, J. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Popul. Environ. 2008, 29, 271–291. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world: River flood risk in a warmer world. Earths Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef][Green Version]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef][Green Version]
- Di Baldassarre, G.; Castellarin, A.; Brath, A. Analysis of the effects of levee heightening on flood propagation: Example of the River Po, Italy. Hydrol. Sci. J. 2009, 54, 1007–1017. [Google Scholar] [CrossRef]
- Heine, R.A.; Pinter, N. Levee effects upon flood levels: An empirical assessment: Levee Effects Upon Flood Levels. Hydrol. Process. 2012, 26, 3225–3240. [Google Scholar] [CrossRef]
- Remo, J.W.F.; Carlson, M.; Pinter, N. Hydraulic and flood-loss modeling of levee, floodplain, and river management strategies, Middle Mississippi River, USA. Nat. Hazards 2012, 61, 551–575. [Google Scholar] [CrossRef]
- Woodward, M.; Gouldby, B.; Kapelan, Z.; Khu, S.-T.; Townend, I. Real Options in flood risk management decision making: Real Options in flood risk management. J. Flood Risk Manag. 2011, 4, 339–349. [Google Scholar] [CrossRef][Green Version]
- Borga, M.; Stoffel, M.; Marchi, L.; Marra, F.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Amérigo, M.; Díez-Herrero, A.; García, J.A.; Cortés, B.; Ballesteros-Cánovas, J.A.; Olcina, J. Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J. Hydrol. 2016, 541, 665–676. [Google Scholar] [CrossRef][Green Version]
- World Health Organization. Working for a Brighter, Healthier Future: How WHO Improves Health and Promotes Well-Being for the World’s Adolescents; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Ceola, S.; Domeneghetti, A.; Schumann, G.J.P. Unraveling Long-Term Flood Risk Dynamics Across the Murray-Darling Basin Using a Large-Scale Hydraulic Model and Satellite Data. Front. Water 2022, 3, 797259. [Google Scholar] [CrossRef]
- Oğuz, E.; Sayin, A.; Ulupinar, Y.; Aksoy, M.; Köse, S.; Akbaş, A. Black Sea and Middle East Flash Flood Guidance System Implementation; Republic of Turkey Ministry of Forestry and Water Affairs Turkish Meteorological Service: Ankara, Turkey, 2015. [Google Scholar]
- World Meteorol Organ. Flash Flood Guidance System (FFGS) with Global Coverage. World Meteorol Organ 2022. Available online: https://community.wmo.int/hydrology-and-water-resources/flash-flood-guidance-system-ffgs-global-coverage (accessed on 20 May 2022).
- Slovic, P. Perception of Risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef]
- Schanze, J.; Zeman, E.; Marsalek, J. (Eds.) Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Keller, C.; Siegrist, M.; Gutscher, H. The Role of the Affect and Availability Heuristics in Risk Communication. Risk Anal. 2006, 26, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Morrow, B.H. Risk Behavior and Risk Communication: Synthesis and Expert Interviews; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009.
- Terpstra, T.; Gutteling, J.M.; Geldof, G.D.; Kappe, L.J. The perception of flood risk and water nuisance. Water Sci. Technol. 2006, 54, 431–439. [Google Scholar] [CrossRef]
- Bier, V.M. On the state of the art: Risk communication to the public. Reliab. Eng. Syst. Saf. 2001, 71, 139–150. [Google Scholar] [CrossRef][Green Version]
- Wright, G.; Bolger, F.; Rowe, G. An Empirical Test of the Relative Validity of Expert and Lay Judgments of Risk. Risk Anal. 2002, 22, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Armaş, I.; Avram, E. Perception of flood risk in Danube Delta, Romania. Nat. Hazards 2009, 50, 269–287. [Google Scholar] [CrossRef]
- Zaalberg, R.; Midden, C.; Meijnders, A.; McCalley, T. Prevention, Adaptation, and Threat Denial: Flooding Experiences in the Netherlands. Risk Anal. 2009, 29, 1759–1778. [Google Scholar] [CrossRef] [PubMed]
- Fischhoff, B.; Bostrom, A.; Quadrel, M.J. Risk Perception and Communication. Annu. Rev. Public Health 1993, 14, 183–203. [Google Scholar] [CrossRef]
- Chusai, C.; Manomaiphiboon, K.; Saiyasitpanich, P.; Thepanondh, S. NO2 and SO2 dispersion modeling and relative roles of emission sources over Map Ta Phut industrial area, Thailand. J. Air Waste Manag. Assoc. 2012, 62, 932–945. [Google Scholar] [CrossRef]
- Kellens, W.; Zaalberg, R.; Neutens, T.; Vanneuville, W.; De Maeyer, P. An Analysis of the Public Perception of Flood Risk on the Belgian Coast: An Analysis of the Public Perception of Flood Risk. Risk Anal. 2011, 31, 1055–1068. [Google Scholar] [CrossRef][Green Version]
- Wang, Z.; Wang, H.; Huang, J.; Kang, J.; Han, D. Analysis of the Public Flood Risk Perception in a Flood-Prone City: The Case of Jingdezhen City in China. Water 2018, 10, 1577. [Google Scholar] [CrossRef][Green Version]
- Whitmarsh, L. Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response. J. Risk Res. 2008, 11, 351–374. [Google Scholar] [CrossRef]
- Benight, C.C.; Gruntfest, E.C.; Hayden, M.; Barnes, L. Trauma and short-fuse weather warning perceptions. Environ. Hazards 2007, 7, 220–226. [Google Scholar] [CrossRef][Green Version]
- Knocke, E.T.; Kolivras, K.N. Flash Flood Awareness in Southwest Virginia. Risk Anal. 2007, 27, 155–169. [Google Scholar] [CrossRef]
- Lave, T.R.; Lave, L.B. Public Perception of the Risks of Floods: Implications for Communication. Risk Anal. 1991, 11, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Ruin, I.; Gaillard, J.; Lutoff, C. How to get there? Assessing motorists’ flash flood risk perception on daily itineraries. Environ. Hazards 2007, 7, 235–244. [Google Scholar] [CrossRef]
- Iasc, E. Inform Report 2022, Shared Evidence for Managing Crises and Disasters; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- National Disaster Management Authority. Annual Flood Report 2010; National Disaster Management Authority: Islamabad, Pakistan, 2010.
- Federal Flood Comission. Annual Flood Report 2017; Federal Flood Comission, Ministry of Water Resources: Islamabad, Pakistan, 2017.
- Rahman, A.-U.-; Khan, A.N.; Shaw, R. Disaster Risk Reduction Approaches in Pakistan; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Kirsch, T.D.; Wadhwani, C.; Sauer, L.; Doocy, S.; Catlett, C. Impact of the 2010 Pakistan Floods on Rural and Urban Populations at Six Months. PLoS Curr. 2012, 4, e4fdfb212d2432. [Google Scholar] [CrossRef]
- Qasim, S.; Nawaz Khan, A.; Prasad Shrestha, R.; Qasim, M. Risk perception of the people in the flood prone Khyber Pukhthunkhwa province of Pakistan. Int. J. Disaster Risk Reduct. 2015, 14, 373–378. [Google Scholar] [CrossRef]
- Qasim, S.; Qasim, M.; Shrestha, R.P.; Khan, A.N.; Tun, K.; Ashraf, M. Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 100–106. [Google Scholar] [CrossRef]
- Rana, I.A.; Routray, J.K. Actual vis-à-vis perceived risk of flood prone urban communities in Pakistan. Int. J. Disaster Risk Reduct. 2016, 19, 366–378. [Google Scholar] [CrossRef]
- Saqib S e Ahmad, M.M.; Panezai, S.; Ali, U. Factors influencing farmers’ adoption of agricultural credit as a risk management strategy: The case of Pakistan. Int. J. Disaster Risk Reduct. 2016, 17, 67–76. [Google Scholar] [CrossRef]
- Saqib, S.E.; Ahmad, M.M.; Panezai, S.; Rana, I.A. An empirical assessment of farmers’ risk attitudes in flood-prone areas of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 107–114. [Google Scholar] [CrossRef]
- Ullah, R.; Jourdain, D.; Shivakoti, G.P.; Dhakal, S. Managing catastrophic risks in agriculture: Simultaneous adoption of diversification and precautionary savings. Int. J. Disaster Risk Reduct. 2015, 12, 268–277. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Kamran, A.; Zulfiqar, F. Farmers versus nature: Managing disaster risks at farm level. Nat. Hazards 2016, 82, 1931–1945. [Google Scholar] [CrossRef]
- Provincial Disaster Management Authority. Contingency Plan Monsoon 2012; Provincial Disaster Management Authority: Peshawar, Pakistan, 2012.
- Federal Flood Commission. Annual Flood Report 2010; Federal Flood Commission, Ministry of Water and Power: Islamabad, Pakistan, 2010.
- Provincial Disaster Management Authority. Contingency Plan Monsoon 2016; Provincial Disaster Management Authority: Peshawar, Pakistan, 2016.
- Provincial Disaster Management Authority. Contingency Plan Monsoon 2014; Provincial Disaster Management Authority: Peshawar, Pakistan, 2014.
- Yamane, T. Statistics: An Introductory Analysis; Harper & Row: Manhattan, NY, USA, 1967. [Google Scholar]
- Adelekan, I.O.; Asiyanbi, A.P. Flood risk perception in flood-affected communities in Lagos, Nigeria. Nat. Hazards 2016, 80, 445–469. [Google Scholar] [CrossRef]
- Ho, M.-C.; Shaw, D.; Lin, S.; Chiu, Y.-C. How Do Disaster Characteristics Influence Risk Perception? Risk Anal. 2008, 28, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Armaş, I. Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Nat. Hazards 2012, 63, 1129–1156. [Google Scholar] [CrossRef]
- Miceli, R.; Sotgiu, I.; Settanni, M. Disaster preparedness and perception of flood risk: A study in an alpine valley in Italy. J. Environ. Psychol. 2008, 28, 164–173. [Google Scholar] [CrossRef]
- Baan, P.J.A.; Klijn, F. Flood risk perception and implications for flood risk management in the Netherlands. Int. J. River Basin. Manag. 2004, 2, 113–122. [Google Scholar] [CrossRef][Green Version]
- Rana, I.A.; Routray, J.K. Multidimensional Model for Vulnerability Assessment of Urban Flooding: An Empirical Study in Pakistan. Int. J. Disaster Risk Sci. 2018, 9, 359–375. [Google Scholar] [CrossRef][Green Version]
- Pagneux, E.; Gísladóttir, G.; Jónsdóttir, S. Public perception of flood hazard and flood risk in Iceland: A case study in a watershed prone to ice-jam floods. Nat. Hazards 2011, 58, 269–287. [Google Scholar] [CrossRef]
- Yu, H.; Wang, B.; Zhang, Y.-J.; Wang, S.; Wei, Y.-M. Public perception of climate change in China: Results from the questionnaire survey. Nat. Hazards 2013, 69, 459–472. [Google Scholar] [CrossRef]
- Kellens, W.; Terpstra, T.; De Maeyer, P. Perception and Communication of Flood Risks: A Systematic Review of Empirical Research: Perception and Communication of Flood Risks. Risk Anal. 2013, 33, 24–49. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jonkman, S.N.; Vrijling, J.K. Loss of life due to floods: Loss of life due to floods. J. Flood Risk Manag. 2008, 1, 43–56. [Google Scholar] [CrossRef]
- District Government Office. Assessment of Flood/Rain Damages 2010; District Dir Government Office, 2010. Available online: https://reliefweb.int/report/pakistan/pakistan-floods-2010-preliminary-damage-and-needs-assessment (accessed on 1 January 2023).
- Ullah, R.; Shivakoti, G.P. Adoption of On-Farm and Off-Farm Diversification to Manage Agricultural Risks: Are These Decisions Correlated? Outlook Agric. 2014, 43, 265–271. [Google Scholar] [CrossRef]
- Sanyal, S.; Routray, J.K. Social capital for disaster risk reduction and management with empirical evidences from Sundarbans of India. Int. J. Disaster Risk Reduct. 2016, 19, 101–111. [Google Scholar] [CrossRef][Green Version]
- Koh, H.K.; Cadigan, R.O. Disaster Preparedness and Social Capital; Kawachi, I., Subramanian, S.V., Kim, D., Eds.; Soc. Cap. Health; Springer: New York, NY, USA, 2008; pp. 273–285. [Google Scholar] [CrossRef]
- Pakistan Poverty Alleviation Fund. Development Profile of Lower Dir District; Pakistan Poverty Alleviation Fund: Islamabad, Pakistan, 2015. [Google Scholar]
- Government of Pakistan. 1998 District Census Report of Lower Dir; Government of Pakistan: Islamabad, Pakistan, 1999.
- District Government Office. Monsoon Contingency Plan District Dir Lower; Government of Khyber Pakhtunkhwa: Peshawar, Pakistan, 2017.
Indicators | Very Low | Low | Moderate | High | Very High | Sources |
---|---|---|---|---|---|---|
1. Flood likelihood of occurrence | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [62,63] |
2. Flood damage likelihood in future | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [52,64,65] |
4. Level of ability to cope with floods | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [52,63] |
5. Likelihood of disruption in supplies from floods | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [52,65] |
3. Level of adjusting to floods or changes in lifestyle | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [64] |
6. Level of threat to life from floods | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [63,66,67] |
7. Likelihood of altering relationships in the community | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | [34,52] |
8. Level of fear and dread from floods | Not Afraid | Slightly Afraid | Neutral | Afraid | Very Much Afraid | [62,63,68] |
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
9. Level of agreement with government policies on DRR | Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree | [67,69] |
0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
Socio-Economic Characteristics | n | % |
---|---|---|
Age (Years) | ||
<30 | 68 | 17.80 |
30–40 | 110 | 28.80 |
41–50 | 135 | 35.34 |
>50 | 69 | 18.06 |
Monthly Income (PKR) | ||
<10,000 | 161 | 42.15 |
10,000–20,000 | 131 | 34.29 |
20,001–30,000 | 36 | 9.42 |
>30,000 | 54 | 14.14 |
Household Members | ||
<8 | 235 | 61.52 |
8–10 | 114 | 29.84 |
>10 | 33 | 8.64 |
Education Level | ||
Illiterate | 135 | 35.34 |
Primary | 95 | 24.87 |
Secondary | 92 | 24.08 |
Higher secondary and above | 60 | 15.71 |
Indicators | Flash Flood | Riverine Flood | p-Value | CI of Difference Lower–Upper | ||
---|---|---|---|---|---|---|
Mean | S. D | Mean | S. D | |||
Flood Likelihood of occurrence | 0.588 | 0.3122 | 0.636 | 0.2771 | 0.165 | (−0.1162)–(0.0199) |
Flood damage likelihood in future | 0.913 | 0.1572 | 0.779 | 0.2207 | 0.000 ** | (0.0940) –(0.1736) |
Level of ability to cope with floods | 0.337 | 0.1988 | 0.449 | 0.2117 | 0.000 ** | (−0.1576)–(−0.0666) |
Likelihood of disruption in supplies from floods | 0.291 | 0.2139 | 0.470 | 0.2986 | 0.000 ** | (−0.2325)–(−0.1245) |
Adjusting to floods or changes in lifestyle | 0.330 | 0.2126 | 0.470 | 0.2438 | 0.000 ** | (−0.1892)–(−0.0896) |
Level threat to life from floods | 0.368 | 0.2857 | 0.428 | 0.2979 | 0.069 | (−0.1251)–(0.0048) |
Likelihood of altering relationships in the community | 0.440 | 0.1206 | 0.587 | 0.2379 | 0.000 ** | (−0.1833)–(−0.1106) |
Level of fear and dread from floods | 0.919 | 0.1621 | 0.938 | 0.1082 | 0.268 | (−0.0524)–(0.0146) |
Level of agreement with government policies on DRR | 0.3920 | 0.17666 | 0.3774 | 0.22137 | 0.500 | (−0.02803)–(0.05737) |
Indicators Used for Infrastructure Damages | Very High | High | Moderate | Low | Very Low | χ2 p-Value | ||
---|---|---|---|---|---|---|---|---|
Level of Damages to Communication Channel | Flash Flood | n (%) | 117 (42.39) | 95(34.42) | 34 (12.32) | 19 (6.99) | 11 (3.99) | 0.113 |
Riverine Flood | n (%) | 38 (35.85) | 29 (27.36) | 20 (18.87) | 13 (12.26) | 6 (5.66) | ||
Level of Damages to Water supply | Flash Flood | n (%) | 128 (46.38) | 75 (27.27) | 39 (14.13) | 19 (6.88) | 15(5.43) | 0.823 |
Riverine Flood | n (%) | 52 (49.06) | 23 (21.70) | 17 (16.04) | 9 (8.49) | 5 (4.72) | ||
Level of Damages to Electricity Lines | Flash Flood | n (%) | 124 (44.93) | 85 (30.80) | 39 (14.13) | 16 (5.80) | 12 (4.35) | 0.837 |
Riverine Flood | n (%) | 47 (44.34) | 29 (27.36) | 15 (14.15) | 8 (7.55) | 7 (6.60) | ||
Level of Damages to Road Network | Flash Flood | n (%) | 142 (51.45) | 81 (29.35) | 35 (12.68) | 13 (4.71) | 5 (1.81) | 0.392 |
Riverine Flood | n (%) | 59 (55.66) | 24 (22.64) | 14 (13.21) | 4 (3.77) | 5 (4.72) | ||
Indicators used for Livelihood Damages | ||||||||
Level of Damages to Businesses/Shops | Flash Flood | n (%) | 145 (52.54) | 56 (20.29) | 47 (17.03) | 12 (4.35) | 16 (5.80) | 0.034 * |
Riverine Flood | n (%) | 57 (53.77) | 33 (31.13) | 13 (12.26) | 2 (1.89) | 1 (0.94) | ||
Level of Damages to Agricultural Land/Crops | Flash Flood | n (%) | 71 (25.72) | 99 (35.85) | 60 (21.74) | 25 (9.06) | 21 (7.61) | 0.000 ** |
Riverine Flood | n (%) | 53 (50.00) | 23 (21.70) | 19 (17.92) | 8 (7.55) | 3 (2.83) | ||
Level of Damages to Livestock | Flash Flood | n (%) | 106 (38.41) | 88 (31.88) | 35 (12.68) | 27 (9.78) | 20 (7.25) | 0.003 ** |
Riverine Flood | n (%) | 23 (21.70) | 31 (29.25) | 21 (19.81) | 14 (13.21) | 17 (16.04) | ||
Level of Damages to Households | Heavy Damages | Moderate Damages | Light Damages | No Damages | ||||
Flash Flood | n (%) | 38 (13.77) | 28 (10.14) | 78 (28.26) | 132 (47.83) | 0.042 * | ||
Riverine Flood | n (%) | 10 (9.43) | 12 (11.32) | 18 (16.98) | 66 (62.26) | |||
Range of Economic Loss from 2010 Floods | >100,000 | 50,000–100,000 | <50,000 | No loss | ||||
Flash Flood | n (%) | 59 (21.38) | 27 (9.78) | 42 (15.22) | 148 (53.62) | 0.021 * | ||
Riverine Flood | n (%) | 27 (25.47) | 21 (19.81) | 16 (15.09) | 42 (39.62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, M.; Ullah, F.; Visetnoi, S.; Ali, S.; Saqib, S.E. Does the Nature of Floods Matter in the Risk Perception of Households? A Comparative Assessment among the Rural Households Prone to Flash and Riverine Floods in Pakistan. Water 2023, 15, 504. https://doi.org/10.3390/w15030504
Yaseen M, Ullah F, Visetnoi S, Ali S, Saqib SE. Does the Nature of Floods Matter in the Risk Perception of Households? A Comparative Assessment among the Rural Households Prone to Flash and Riverine Floods in Pakistan. Water. 2023; 15(3):504. https://doi.org/10.3390/w15030504
Chicago/Turabian StyleYaseen, Muhammad, Farman Ullah, Supawan Visetnoi, Shoukat Ali, and Shahab E. Saqib. 2023. "Does the Nature of Floods Matter in the Risk Perception of Households? A Comparative Assessment among the Rural Households Prone to Flash and Riverine Floods in Pakistan" Water 15, no. 3: 504. https://doi.org/10.3390/w15030504