Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Estimation of
3.2. Estimation of
3.3. The Impact of Meteorological Variables on
3.3.1. Mann-Kendall Test
3.3.2. Sensitivity Analysis
3.3.3. Probability Density Function
4. Results
4.1. Mean Seasonal and Annual and Meteorological Variables
4.2. Significant Trends of and Meteorological Variables on Seasonal and Annual Scale
4.3. Sensitivity Analysis of Meteorological Variables to Change over the Korean Peninsula
4.4. Probability Density Function of Meteorological Variables to Change over the Korean Peninsula
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gocic, M.; Trajkovic, S. Analysis of trends in reference evapotranspiration data in a humid agricultural water management climate. Hydrol. Sci. J. 2014, 59, 65–180. [Google Scholar] [CrossRef]
- Valipour, M.; Bateni, S.M.; Gholami Sefidkouhi, M.A.; Raeini-Sarjaz, M.; Singh, V.P. Complexity of Forces Driving Trend of Reference Evapotranspiration and Signals of Climate Change. Atmosphere 2020, 11, 1081. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, P.; Mu, X. Influence of Meteorological Factors on the Potential Evapotranspiration in Yanhe River Basin, China. Water 2021, 13, 1222. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [Google Scholar] [CrossRef] [Green Version]
- Muhammad Adnan, R.; Chen, Z.; Yuan, X.; Kisi, O.; El-Shafie, A.; Kuriqi, A.; Ikram, M. Reference Evapotranspiration Modeling Using New Heuristic Methods. Entropy 2020, 22, 547. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, S.; Zhang, L.; Liu, J. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agric. Water Manag. 2010, 97, 1506–1516. [Google Scholar] [CrossRef]
- Sahoo, B.; Walling, I.; Deka, B.C.; Bhatt, B.P. Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. J. Irrig. Drain. Eng. 2012, 138, 880–896. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari, B.; Liaghat, A.M. Seasonal Sensitivity Analysis for Climatic Variables of ASCE Penman-Monteith Model in a Semi-Arid Climate. J. Agric. Sci. Technol. 2011, 13, 1135–1145. [Google Scholar]
- Pandey, P.K.; Dabral, P.P.; Pandey, V. Evaluation of reference evapotranspiration methods for the northeastern region of India. Int. Soil Water Conserv. Res. 2016, 4, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.K.; Nyori, T.; Pandey, V. Estimation of reference evapotranspiration using data driven techniques under limited data conditions. Model. Earth Syst. Environ. 2017, 3, 1449–1461. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Vicente-Serranoa, S.M.; Azorin-Molinaa, C.; Sanchez-Lorenzoa, A.; Revuelto, J.; López-Morenoa, J.I.; González-Hidalgoc, J.C.; Moran-Tejedaa, E.; Espejod, F. Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob. Planet. Chang. 2014, 121, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Nouri, M.; Homaee, M.; Bannayan, M. Spatiotemporal reference evapotranspiration changes in humid and semi-arid regions of Iran: Past trends and future projections. Theor. Appl. Climatol. 2018, 133, 361–375. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M. Quantitative trend, sensitivity and contribution analyses of reference evapotranspiration in some arid environments under climate change. Water Resour. Manag. 2017, 31, 2207–2224. [Google Scholar] [CrossRef]
- Yan, X.; Mohammadian, A.; Ao, R.; Liu, J.; Chen, X. Spatiotemporal Variations in Reference Evapotranspiration and Its Contributing Climatic Variables at Various Spatial Scales across China for 1984–2019. Water 2022, 14, 2502. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Babamiri, O. Trends in reference crop evapotranspiration in Urmia Lake basin. Arab. J. Geosci. 2020, 13, 372. [Google Scholar] [CrossRef]
- Ndiaye, P.M.; Bodian, A.; Diop, L.; Deme, A.; Dezetter, A.; Djaman, K.; Ogilvie, A. Trend and Sensitivity Analysis of Reference Evapotranspiration in the Senegal River Basin Using NASA Meteorological Data. Water 2020, 12, 1957. [Google Scholar] [CrossRef]
- Da Silva, V.D.P.R. On climate variability in northeast of Brazil. J. Arid Environ. 2004, 58, 575–596. [Google Scholar] [CrossRef]
- Darshana; Pandey, A.; Pandey, R.P. Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch. Environ. Res. Risk Assess. 2013, 27, 1407–1421. [Google Scholar] [CrossRef]
- Obada, E.; Alamou, E.A.; Chabi, A.; Zandagba, J.; Afouda, A. Trends and Changes in Recent and Future Penman-Monteith Potential Evapotranspiration in Benin (West Africa). Hydrology 2017, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Dinpashoh, Y. Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran. Water Res. Manag. 2014, 28, 5465–5476. [Google Scholar] [CrossRef]
- Seong, C.; Sridhar, V.; Billah, M.M. Implications of potential evapotranspiration methods for streamflow estimations under changing climatic conditions. Int. J. Climatol. 2018, 38, 896–914. [Google Scholar] [CrossRef]
- Irmak, S.; Payero, J.O.; Martin, D.L.; Irmak, A.; Howell, T.A. Sensitivity analyses and sensitivity coefficients of standardized daily ASCE-Penman-Monteith equation. J. Irrig. Drain. Eng. 2006, 132, 564–578. [Google Scholar] [CrossRef]
- Goyal, R.K. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agric. Water Manag. 2004, 69, 1–11. [Google Scholar] [CrossRef]
- Liqiao, L.; Li, L.; Zhang, L.; Li, J.; Li, B. Sensitivity of Penman-Monteith reference crop evapotranspiration in Tao’er River Basin of northeastern China. Chin. Geogr. Sci. 2008, 18, 340–347. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilán, P.; Berengena, J. Sensitivity analysis of a Penman–Monteith type equation to estimate reference evapotranspiration in southern Spain. Hydrol. Process. 2009, 23, 3342–3353. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, H.; Snyder, R.; Anderson, F.; Chen, F. Distribution and trends in reference evapotranspiration in the North China Plain. J. Irrig. Drain. Eng. 2010, 136, 240–247. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Cui, B. Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrol. Sci. J. 2011, 56, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.; Gowda, P.; Marek, T.; Howell, T.; Moorhead, T.J.; Irmak, S. Sensitivity of grass-and alfalfa-reference evapotranspiration to weather station sensor accuracy. Appl. Eng. Agric. 2012, 28, 543–549. [Google Scholar] [CrossRef]
- Hou, L.G.; Zou, S.B.; Xiao, H.L.; Yang, Y.G. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China. SpringerPlus 2013, 2 (Suppl. 1), S4. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, G.; Wu, L.; Wu, Y.; Yang, M. Variations in reference evapotranspiration and associated driving forces in the Pearl River Delta of China during 1960–2016. J. Meteorol. Soc. Jpn. 2019, 97, 467–479. [Google Scholar] [CrossRef]
- Hwang, J.H.; Van, S.P.; Choi, B.-J.; Chang, Y.S.; Kim, Y.H. The physical processes in the Yellow Sea. Ocean Coast. Manag. 2014, 102, 449–457. [Google Scholar] [CrossRef]
- Teng, S.K.; Yu, H.; Tang, Y.; Tong, L.; Choi, C.I.; Kang, D.; Liu, H.; Chun, Y.; Juliano, R.O.; Rautalahti-Miettinen, E.; et al. Yellow Sea; GIWA Regional Assessment 34; University of Kalmar: Kalmar, Sweden, 2005. [Google Scholar]
- Hargreaves, G.H.; Samani, Z. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Xu, J.; Haginoya, S.; Saito, K.; Motoya, K. Surface heat balance and pan evaporation trends in eastern Asia in the period 1971–2000. Hydrol. Process. 2005, 19, 2161–2186. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Navarra, A. Analysis of Climate Variability-Applications of Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Coleman, G.; DeCoursey, D.G. Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models. Water Resour. Res. 1976, 12, 873–879. [Google Scholar] [CrossRef]
- Hupet, F.; Vanclooster, M. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J. Hydrol. 2001, 243, 192–204. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Chen, G.; Dai, E. Contribution analyses of potential evapotranspiration changes in China since the 1960s. Theor. Appl. Climatol. 2010, 101, 19–28. [Google Scholar] [CrossRef]
- Patle, G.T.; Singh, D.K. Sensitivity of annual and seasonal reference crop evapotranspiration to principal climatic variables. J. Earth Syst. Sci. 2015, 124, 819–828. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H. A sensitivity and error analysis CF procedures used for estimating evaporation. J. Am. Water Resour. Assoc. 1974, 10, 486–497. [Google Scholar] [CrossRef]
- Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Oliver, M.A. Kriging: A Method of Interpolation for Geographical Information Systems. Int. J. Geogr. Inf. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Xu, C.Y.; Gong, L.; Jiang, T.; Chend, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cui, B.; Sun, T. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrol. Process. 2010, 24, 2171–2181. [Google Scholar] [CrossRef]
- Murphy, K. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012; p. 16. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing, Monographs on Statistics and Applied Probability; Chapman & Hall: Boca Raton, FL, USA, 1995. [Google Scholar]
- Aydin, M.; Jung, Y.S.; Yang, J.E.; Kim, S.J.; Kim, K.D. Sensitivity of soil evaporation and reference evapotranspiration to climatic variables in South Korea. Turk. J. Agric. For. 2015, 39, 652–662. [Google Scholar] [CrossRef]
- Russak, V. Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J. Geophys. Res. 2009, 114, D00D01. [Google Scholar] [CrossRef]
- Verhoef, A.; Feddes, R.A. Preliminary Review of Revised FAO Radiation and Temperature Methods; FAO Report 16; Landbouwuniversiteit Wageningen: Wageningen, The Netherlands, 1991; pp. 1–116. [Google Scholar]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Youn, Y.H. The climate variabilities of air temperature around the Korean Peninsula. Adv. Atmos. Sci. 2005, 22, 575–584. [Google Scholar] [CrossRef]
- Nie, T.; Yuan, R.; Liao, S.; Zhang, Z.; Gong, Z.; Zhao, X.; Chen, P.; Li, T.; Lin, Y.; Du, C.; et al. Characteristics of Potential Evapotranspiration Changes and Its Climatic Causes in Heilongjiang Province from 1960 to 2019. Agriculture 2022, 12, 2017. [Google Scholar] [CrossRef]
- Xiaomei, Y.; Zongxing, L.; Qi, F.; Yuanqing, H.; Wenlin, A.; Wei, Z.; Weihong, C.; Tengfei, Y.; Yamin, W.; Theakstone, W.H. The decreasing wind speed in southwestern China during 1969–2009, and possible causes. Quat. Int. 2012, 263, 71–84. [Google Scholar] [CrossRef]
Weather Observation Data by Country | Variables | Period | Link |
---|---|---|---|
South Korea | 1980–2021 | https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 (accessed on 20 May 2022). | |
1980–2021 | |||
1980–2021 | |||
1980–2021 | |||
1980–2021 | |||
North Korea | 1980–2021 | https://data.kma.go.kr/data/grnd/selectNkRltmList.do?pgmNo=58 (accessed on 20 May 2022). | |
1980–2021 | |||
1980–2021 | |||
1980–2021 |
Station Code | Station Name | Lat. (°) | Lon. (°) | Geography | Ele. (m) | Station Code | Station Name | Lat. (°) | Lon. (°) | Geography | Ele. (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
3 | Seonbong | 42.3 | 130.4 | EC | 3 | 69 | Haeju | 38.0 | 125.7 | WC | 81 |
5 | Samjiyeon | 41.8 | 128.3 | M | 1386 | 70 | Gaeseong | 38.0 | 126.6 | P | 70 |
8 | Cheongjin | 41.8 | 129.8 | EC | 43 | 75 | Pyeonggang | 38.4 | 127.3 | P | 371 |
14 | Junggang | 41.8 | 126.9 | P | 332 | 100 | Daegwalryeong | 37.7 | 128.7 | M | 842.5 |
16 | Hyesan | 41.4 | 128.2 | M | 714 | 101 | Chuncheon | 37.9 | 127.7 | P | 75.6 |
20 | Ganggye | 41.0 | 126.6 | P | 306 | 105 | Gangnung | 37.8 | 128.9 | EC | 26 |
22 | Pungsan | 40.8 | 128.2 | M | 1206 | 108 | Seoul | 37.6 | 127.0 | P | 85.5 |
25 | Gim-haeg | 40.7 | 129.2 | EC | 23 | 112 | Incheon | 37.5 | 126.6 | WC | 68.2 |
28 | Supung | 40.5 | 124.9 | P | 83 | 114 | Wonju | 37.3 | 127.9 | P | 148.6 |
31 | Cheongjin | 40.4 | 127.3 | M | 1081 | 129 | Seosan | 36.8 | 126.5 | P | 28.9 |
35 | Sinuiju | 40.1 | 124.4 | P | 7 | 131 | Cheongju | 36.6 | 127.4 | P | 57.2 |
37 | Guseong | 40.0 | 125.3 | P | 99 | 133 | Daejeon | 36.4 | 127.4 | P | 68.9 |
39 | Huicheon | 40.2 | 126.3 | P | 155 | 135 | Chupungyon | 36.2 | 128.0 | P | 244.7 |
41 | Hamheung | 39.9 | 127.6 | P | 38 | 136 | Andong | 36.6 | 128.7 | P | 139.4 |
46 | Sinpo | 40.0 | 128.2 | EC | 19 | 138 | Pohang | 36.0 | 129.4 | EC | 2.3 |
50 | Anju | 39.6 | 125.7 | P | 27 | 143 | Daegu | 35.9 | 128.6 | P | 53.4 |
52 | Yangdeog | 39.2 | 126.7 | P | 279 | 146 | Jeonju | 35.8 | 127.2 | P | 62.4 |
55 | Wonsan | 39.2 | 127.4 | EC | 36 | 156 | Kwangju | 35.2 | 126.9 | P | 72.4 |
58 | Pyeongyang | 39.0 | 125.8 | P | 38 | 159 | Busan | 35.1 | 129.0 | SC | 69.6 |
60 | Nampo | 38.7 | 125.4 | P | 47 | 165 | Mokpo | 34.8 | 126.4 | WC | 38 |
61 | Jangjeon | 38.7 | 128.2 | EC | 35 | 169 | Heuksan | 34.7 | 125.5 | WC | 76.5 |
65 | Saliwon | 38.5 | 125.8 | P | 52 | 184 | Jeju | 33.5 | 126.5 | SC | 20.45 |
67 | Singye | 38.5 | 126.5 | P | 100 | 185 | Gosan | 33.3 | 126.2 | SC | 71.5 |
68 | Yongyeon | 38.2 | 124.9 | WC | 5 | 192 | Jinju | 35.2 | 128.0 | SC | 21.3 |
Station Code | Station Name | R2 | RMSE (MJ/m2) |
---|---|---|---|
100 | Daegwalryeong | 0.97 | 0.28 |
101 | Chuncheon | 0.95 | 0.35 |
105 | Gangnung | 0.96 | 0.33 |
108 | Seoul | 0.95 | 0.39 |
112 | Incheon | 0.95 | 0.38 |
114 | Wonju | 0.87 | 0.55 |
129 | Seosan | 0.95 | 0.34 |
131 | Cheongju | 0.95 | 0.40 |
133 | Daejeon | 0.95 | 0.33 |
135 | Chupungyong | 0.94 | 0.40 |
136 | Andong | 0.95 | 0.34 |
138 | Pohang | 0.96 | 0.34 |
143 | Daegu | 0.97 | 0.29 |
146 | Jeonju | 0.96 | 0.33 |
156 | Gwangju | 0.96 | 0.30 |
159 | Busan | 0.95 | 0.33 |
165 | Mokpo | 0.97 | 0.28 |
169 | Heuksando | 0.84 | 0.34 |
184 | Jeju | 0.96 | 0.29 |
185 | Gosan | 0.95 | 0.27 |
192 | Jinju | 0.96 | 0.30 |
Period | Mountain | Plain | West Coast | East Coast | South Coast | |||||
---|---|---|---|---|---|---|---|---|---|---|
MEAN | B | MEAN | B | MEAN | B | MEAN | B | MEAN | B | |
ETo (unit mm yr−1 for the mean and mm yr−2 for the rate) | ||||||||||
Spring | 227.14 | 0.31 | 253.63 | 0.32 | 243.25 | 0.18 | 214.59 | 0.53 | 269.32 | −0.09 |
Summer | 386.74 | 0.41 | 419.95 | 0.65 | 413.99 | 0.60 | 370.70 | 0.65 | 425.41 | 0.35 |
Autumn | 149.30 | 0.06 | 175.12 | 0.09 | 199.08 | −0.24 | 165.52 | 0.17 | 209.52 | −0.22 |
Winter | 50.34 | 0.00 | 63.58 | 0.02 | 78.15 | −0.19 | 64.05 | 0.07 | 96.16 | −0.24 |
Annual | 813.50 | 0.78 | 912.28 | 1.09 | 934.47 | 0.36 | 814.85 | 1.43 | 1000.39 | −0.21 |
RH (unit % for the mean and % yr−1 for the rate) | ||||||||||
Spring | 57.59 | −0.06 | 62.58 | −0.02 | 70.57 | 0.00 | 70.46 | −0.06 | 66.19 | −0.02 |
Summer | 68.43 | −0.05 | 73.94 | 0.00 | 79.37 | 0.02 | 80.35 | −0.04 | 78.00 | 0.00 |
Autumn | 59.66 | −0.02 | 66.06 | 0.04 | 72.45 | 0.07 | 71.23 | −0.01 | 69.00 | 0.05 |
Winter | 52.74 | −0.05 | 63.98 | −0.01 | 72.20 | 0.05 | 68.95 | −0.05 | 64.59 | 0.00 |
Annual | 59.68 | −0.04 | 66.72 | 0.00 | 73.72 | 0.04 | 72.81 | −0.04 | 69.54 | 0.01 |
RS (unit MJm−2d−1for the mean and MJm−2d−1yr−1 for the rate) | ||||||||||
Spring | 18.06 | 0.01 | 16.73 | 0.02 | 15.75 | 0.01 | 14.64 | 0.02 | 17.15 | 0.01 |
Summer | 24.11 | 0.01 | 23.42 | 0.02 | 23.28 | 0.02 | 22.02 | 0.01 | 23.56 | 0.01 |
Autumn | 12.31 | 0.01 | 11.97 | 0.01 | 12.19 | 0.01 | 10.94 | 0.01 | 13.27 | 0.01 |
Winter | 9.07 | 0.00 | 6.82 | 0.00 | 6.26 | −0.01 | 5.81 | 0.00 | 7.51 | 0.01 |
Annual | 15.93 | 0.01 | 14.77 | 0.01 | 14.41 | 0.01 | 13.40 | 0.01 | 15.42 | 0.01 |
Tmax (unit °C for the mean and °C yr−1for the rate) | ||||||||||
Spring | 11.15 | 0.03 | 17.21 | 0.05 | 16.20 | 0.03 | 14.28 | 0.06 | 18.72 | 0.03 |
Summer | 23.47 | 0.04 | 28.38 | 0.05 | 27.46 | 0.04 | 24.86 | 0.05 | 28.39 | 0.03 |
Autumn | 12.29 | 0.04 | 18.56 | 0.04 | 19.57 | 0.02 | 17.52 | 0.04 | 21.48 | 0.02 |
Winter | −3.86 | 0.02 | 2.96 | 0.03 | 4.61 | 0.01 | 3.34 | 0.05 | 8.82 | 0.04 |
Annual | 10.82 | 0.03 | 16.84 | 0.04 | 17.04 | 0.02 | 15.06 | 0.05 | 19.42 | 0.03 |
Tmin (unit °C for the mean and °C yr−1 for the rate) | ||||||||||
Spring | −2.18 | 0.01 | 5.05 | 0.04 | 6.84 | 0.02 | 5.04 | 0.04 | 7.59 | 0.02 |
Summer | 12.82 | 0.02 | 19.38 | 0.04 | 20.40 | 0.04 | 18.25 | 0.04 | 20.74 | 0.03 |
Autumn | −0.44 | 0.03 | 7.58 | 0.05 | 10.65 | 0.04 | 8.40 | 0.04 | 11.19 | 0.05 |
Winter | −17.23 | 0.01 | −7.44 | 0.04 | −3.47 | 0.03 | −5.52 | 0.03 | −2.03 | 0.04 |
Annual | −1.71 | 0.02 | 6.21 | 0.04 | 8.66 | 0.03 | 6.60 | 0.04 | 9.43 | 0.04 |
WS (unit ms−1for the mean and ms−1 yr−1 for the rate) | ||||||||||
Spring | 1.64 | 0.00 | 1.44 | −0.01 | 2.34 | −0.01 | 1.55 | 0.00 | 1.90 | −0.02 |
Summer | 1.09 | −0.01 | 1.12 | 0.00 | 1.85 | −0.01 | 1.14 | 0.00 | 1.69 | −0.01 |
Autumn | 1.26 | −0.01 | 1.05 | −0.01 | 1.91 | −0.01 | 1.36 | 0.00 | 1.55 | −0.01 |
Winter | 1.56 | −0.01 | 1.26 | −0.01 | 2.35 | −0.01 | 1.53 | 0.00 | 1.88 | −0.02 |
Annual | 1.39 | −0.01 | 1.21 | −0.01 | 2.11 | −0.01 | 1.39 | 0.00 | 1.75 | −0.02 |
Period | Mountain | Plain | West Coast | East Coast | South Coast | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inc. | Dec. | No | Inc. | Dec. | No | Inc. | Dec. | No | Inc. | Dec. | No | Inc. | Dec. | No | |
ETo | |||||||||||||||
Spring | 2 | 0 | 3 | 8 | 0 | 18 | 2 | 1 | 2 | 4 | 0 | 4 | 1 | 1 | 2 |
Summer | 3 | 0 | 2 | 18 | 0 | 8 | 3 | 0 | 2 | 7 | 0 | 1 | 1 | 0 | 3 |
Autumn | 0 | 0 | 5 | 5 | 4 | 17 | 0 | 0 | 5 | 1 | 2 | 5 | 0 | 2 | 2 |
Winter | 0 | 0 | 5 | 4 | 2 | 20 | 0 | 0 | 5 | 0 | 1 | 7 | 1 | 1 | 2 |
Annual | 2 | 0 | 3 | 11 | 1 | 14 | 2 | 1 | 2 | 5 | 0 | 3 | 1 | 1 | 2 |
RH | |||||||||||||||
Spring | 0 | 1 | 4 | 3 | 3 | 20 | 1 | 0 | 4 | 1 | 3 | 4 | 1 | 0 | 3 |
Summer | 0 | 2 | 3 | 4 | 2 | 20 | 1 | 0 | 4 | 1 | 6 | 1 | 2 | 0 | 2 |
Autumn | 0 | 1 | 4 | 10 | 1 | 15 | 2 | 0 | 3 | 1 | 3 | 4 | 2 | 0 | 2 |
Winter | 1 | 1 | 3 | 4 | 4 | 18 | 1 | 0 | 4 | 0 | 3 | 5 | 1 | 0 | 3 |
Annual | 0 | 0 | 5 | 7 | 2 | 17 | 1 | 0 | 4 | 1 | 3 | 4 | 2 | 0 | 2 |
RS | |||||||||||||||
Spring | 1 | 0 | 4 | 14 | 0 | 12 | 2 | 0 | 3 | 7 | 0 | 1 | 3 | 0 | 1 |
Summer | 3 | 0 | 2 | 22 | 0 | 4 | 4 | 1 | 0 | 5 | 0 | 3 | 4 | 0 | 0 |
Autumn | 2 | 0 | 3 | 12 | 0 | 14 | 2 | 2 | 1 | 5 | 0 | 3 | 3 | 0 | 1 |
Winter | 0 | 0 | 5 | 3 | 2 | 21 | 0 | 0 | 5 | 3 | 0 | 5 | 2 | 0 | 2 |
Annual | 2 | 0 | 3 | 19 | 0 | 7 | 2 | 1 | 2 | 7 | 0 | 1 | 4 | 0 | 0 |
Spring | 5 | 0 | 0 | 21 | 0 | 5 | 2 | 0 | 3 | 8 | 0 | 0 | 3 | 0 | 1 |
Summer | 5 | 0 | 0 | 22 | 0 | 4 | 2 | 0 | 3 | 7 | 0 | 1 | 2 | 0 | 2 |
Autumn | 4 | 0 | 1 | 20 | 0 | 6 | 2 | 1 | 2 | 4 | 0 | 4 | 4 | 0 | 0 |
Winter | 1 | 0 | 4 | 0 | 0 | 26 | 0 | 0 | 5 | 3 | 0 | 5 | 2 | 0 | 2 |
Annual | 1 | 0 | 4 | 18 | 0 | 8 | 2 | 1 | 2 | 5 | 0 | 3 | 4 | 0 | 0 |
Spring | 2 | 0 | 3 | 18 | 0 | 8 | 2 | 0 | 3 | 6 | 0 | 2 | 2 | 0 | 2 |
Summer | 4 | 0 | 1 | 24 | 0 | 2 | 4 | 0 | 1 | 8 | 0 | 0 | 4 | 0 | 0 |
Autumn | 5 | 0 | 0 | 21 | 0 | 5 | 3 | 0 | 2 | 6 | 0 | 2 | 3 | 0 | 1 |
Winter | 0 | 0 | 5 | 3 | 0 | 23 | 0 | 0 | 5 | 2 | 0 | 6 | 0 | 0 | 4 |
Annual | 4 | 0 | 1 | 18 | 0 | 8 | 3 | 0 | 2 | 5 | 0 | 3 | 4 | 0 | 0 |
WS | |||||||||||||||
Spring | 1 | 1 | 3 | 1 | 9 | 16 | 0 | 2 | 3 | 0 | 2 | 6 | 0 | 2 | 2 |
Summer | 0 | 1 | 4 | 0 | 8 | 18 | 0 | 3 | 2 | 0 | 2 | 6 | 0 | 2 | 2 |
Autumn | 0 | 1 | 4 | 1 | 9 | 16 | 0 | 3 | 2 | 0 | 2 | 6 | 0 | 2 | 2 |
Winter | 1 | 1 | 3 | 2 | 9 | 15 | 0 | 0 | 5 | 0 | 1 | 7 | 1 | 1 | 2 |
Annual | 0 | 2 | 3 | 1 | 8 | 17 | 0 | 2 | 3 | 0 | 1 | 7 | 0 | 2 | 2 |
Period | Mountain | Plain | West Coast | East Coast | South Coast |
---|---|---|---|---|---|
Spring | |||||
RH | −0.41 | −0.50 | −0.98 | −0.68 | −1.02 |
RS | 0.53 | 0.51 | 0.47 | 0.50 | 0.51 |
0.55 | 0.86 | 1.04 | 0.84 | 1.10 | |
0.03 | 0.04 | 0.05 | 0.07 | 0.13 | |
WS | 0.10 | 0.12 | 0.10 | 0.10 | 0.09 |
Summer | |||||
RH | −0.19 | −0.24 | −0.57 | −0.34 | −0.66 |
RS | 0.74 | 0.76 | 0.73 | 0.76 | 0.74 |
0.72 | 0.54 | 0.46 | 0.17 | 0.28 | |
0.22 | 0.58 | 0.87 | 0.91 | 1.12 | |
WS | 0.01 | 0.03 | 0.01 | 0.00 | 0.01 |
Autumn | |||||
RH | −0.49 | −0.55 | −1.15 | −0.85 | −1.27 |
RS | 0.30 | 0.36 | 0.38 | 0.34 | 0.43 |
0.51 | 0.79 | 1.03 | 0.87 | 1.06 | |
0.02 | 0.11 | 0.24 | 0.17 | 0.41 | |
WS | 0.18 | 0.19 | 0.19 | 0.21 | 0.15 |
Winter | |||||
RH | −0.73 | −0.99 | −1.90 | −1.32 | −2.03 |
RS | 0.00 | 0.05 | 0.10 | 0.02 | 0.14 |
−0.31 | 0.18 | 0.41 | 0.29 | 0.95 | |
−0.17 | −0.08 | −0.03 | −0.06 | −0.02 | |
WS | 0.25 | 0.25 | 0.24 | 0.29 | 0.24 |
Annual | |||||
RH | −0.46 | −0.57 | −1.15 | −0.80 | −1.24 |
RS | 0.39 | 0.42 | 0.42 | 0.41 | 0.45 |
0.37 | 0.59 | 0.74 | 0.54 | 0.85 | |
0.02 | 0.16 | 0.28 | 0.28 | 0.41 | |
WS | 0.14 | 0.16 | 0.14 | 0.16 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafouri-Azar, M.; Lee, S.-I. Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions. Water 2023, 15, 454. https://doi.org/10.3390/w15030454
Ghafouri-Azar M, Lee S-I. Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions. Water. 2023; 15(3):454. https://doi.org/10.3390/w15030454
Chicago/Turabian StyleGhafouri-Azar, Mona, and Sang-Il Lee. 2023. "Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions" Water 15, no. 3: 454. https://doi.org/10.3390/w15030454
APA StyleGhafouri-Azar, M., & Lee, S.-I. (2023). Meteorological Influences on Reference Evapotranspiration in Different Geographical Regions. Water, 15(3), 454. https://doi.org/10.3390/w15030454