# A Chronology-Based Wave Input Reduction Technique for Simulations of Long-Term Coastal Morphological Changes: An Application to the Beach of Mastichari, Kos Island, Greece

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Physiographic Setting

#### 2.2. Bathymetry and Topography

^{®},v.10.8).

#### 2.3. Wind and Wave Climate

#### 2.4. Wave Input Reduction Techniques

#### 2.4.1. The Energy Flux Method

^{3}), g is the gravity acceleration (9.81 m

^{2}/s), ${H}_{m0}$ is the significant wave height of the wave record, and $Cg$ is the group wave celerity in deep water, which is estimated as $\mathrm{g}{T}_{p}/4\pi $, depending on the ${T}_{p}$ of the wave record.

#### 2.4.2. A Wind and Wave Chronology-Based Input Reduction Technique

#### 2.4.3. A Wave Chronology-Based Input Reduction Technique

#### 2.4.4. Simulations

- A simulation consisting of the full time series at the offshore boundary, which is denoted as the reference/benchmark simulation.
- Five repetitive simulations using the 12 representatives in random order, which were calculated by the energy flux input reduction method and are denoted as the energy flux simulation with five repetitions. The average of 5 repetitions is in accordance with [4], the authors of which used the same approach for estimating the average performance score of the Energy Flux Method. In this study, the average result of the 5 repetitions was estimated as the expected result, considering the uncertainty of the random order of the 12 representative scenarios and its effect on the final result.
- A simulation consisting of a time series of representatives of wind-wave events and swell events, which have been extracted by the wave input reduction technique of Malliouri et al. [22], which is denoted hereafter as the wind and wave chronology- based input reduction technique.
- A set of three simulations consisting of isolated sequences of the representative scenarios of wave events with similar characteristics based on the three criteria (see Equation (8)) for specific $\mathsf{\Delta}h$, $\mathsf{\Delta}t$, and $\mathsf{\Delta}d$ values and specific morphological acceleration factors (MORFAC), which are denoted hereafter as the wave chronology- based input reduction techniques.

#### 2.5. Numerical Model Setup

#### 2.6. Evaluation of Wave Input Reduction Techniques

## 3. Results

#### 3.1. Representative Wave Conditions

#### 3.2. Numerical Models Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Benedet, L.; Dobrochinski, J.P.F.; Walstra, D.J.R.; Klein, A.H.F.; Ranasinghe, R. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng.
**2016**, 112, 69–86. [Google Scholar] [CrossRef] - Karathanasi, F.E.; Belibassakis, K.A. A cost-effective method for estimating long-term effects of waves on beach erosion with application to Sitia Bay, Crete. Oceanologia
**2019**, 61, 276–290. [Google Scholar] [CrossRef] - Walstra, D.J.R.; Hoekstra, R.; Tonnon, P.K.; Ruessink, B.G. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng.
**2013**, 77, 57–70. [Google Scholar] [CrossRef] - de Queiroz, B.; Scheel, F.; Caires, S.; Walstra, D.-J.; Olij, D.; Yoo, J.; Reniers, A.; de Boer, W. Performance Evaluation of Wave Input Reduction Techniques for Modeling Inter-Annual Sandbar Dynamics. J. Mar. Sci. Eng.
**2019**, 7, 148. [Google Scholar] [CrossRef][Green Version] - Ranasinghe, R.; Swinkels, C.; Luijendijk, A.; Roelvink, D.; Bosboom, J.; Stive, M.; Walstra, D. Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coast. Eng.
**2011**, 58, 806–811. [Google Scholar] [CrossRef] - Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng.
**2004**, 51, 883–915. [Google Scholar] [CrossRef] - Knaapen, M.A.F.; Joustra, R. Morphological acceleration factor: Usability, accuracy and run time reductions. In Proceedings of the XIXth TELEMAC-MASCARET User Conference, Oxford, UK, 18–19 October 2012. [Google Scholar]
- USACE. Shore Protection Manual. Volume 1; Waterways Experiment Station, Coastal Engineering and Research Center: Vicksburg, MS, USA, 1984. [Google Scholar]
- Lesser, G.L. An Approach to Medium-Term Coastal Morphological Modelling; Delft University of Technology and UNESCO–IHE Institute for Water Education: Holland, The Netherlands, 2009. [Google Scholar]
- Molecular-American Chemical Society. Schematization of Boundary Conditions for Morphological Simulations; American Chemical Society: Washington, DC, USA, 2007. [Google Scholar]
- Roelvink, D.; Reniers, A. A Guide to Modeling Coastal Morphology; Advances in Coastal and Ocean Engineering; World Scientific: Singapore, 2011; Volume 12, ISBN 978-981-4304-25-2. [Google Scholar]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics
**1969**, 11, 137–148. [Google Scholar] [CrossRef] - Olij, D.J.C. Wave Climate Reduction for Medium Term Process Based Morphodynamic Simulations with Application to the Durban Coast. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Camus, P.; Mendez, F.J.; Medina, R.; Cofiño, A.S. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coast. Eng.
**2011**, 58, 453–462. [Google Scholar] [CrossRef] - Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Lucien, M.L.C., Jerzy, N., Eds.; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Ruessink, B.G.; Kuriyama, Y.; Reniers, A.J.H.M.; Roelvink, J.A.; Walstra, D.J.R. Modeling cross-shore sandbar behavior on the timescale of weeks. J. Geophys. Res.
**2007**, 112, F03010. [Google Scholar] [CrossRef][Green Version] - Southgate, H.N. The effects of wave chronology on medium and long term coastal morphology. Coast. Eng.
**1995**, 26, 251–270. [Google Scholar] [CrossRef] - Chesher, T.J.; Soulsby, R.L.; Foley, W.J.; Sterlini, P.E.; Jervis, G. Morphological modelling using the 2DH model, PISCES. In Sand Transport and Morphology or Offshore Mining Pits; Van Rijn, L.C., Soulsby, R.L., Hoekstra, P., Davies, A.G., Eds.; Aqua Publications: Amsterdam, The Netherlands, 2005; pp. AO1–AO14. [Google Scholar]
- Brown, J.M.; Davies, A.G. Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont. Shelf Res.
**2009**, 29, 1502–1514. [Google Scholar] [CrossRef] - de Vriend, H.J.; Capobianco, M.; Chesher, T.; de Swart, H.E.; Latteux, B.; Stive, M.J.F. Approaches to long-term modelling of coastal morphology: A review. Coast. Eng.
**1993**, 21, 225–269. [Google Scholar] [CrossRef][Green Version] - Papadimitriou, A.; Panagopoulos, L.; Chondros, M.; Tsoukala, V. A Wave Input-Reduction Method Incorporating Initiation of Sediment Motion. J. Mar. Sci. Eng.
**2020**, 8, 597. [Google Scholar] [CrossRef] - Malliouri, D.I.; Petrakis, S.; Vandarakis, D.; Kikaki, K.; Hatiris, G.-A.; Gad, F.-K.; Panagiotopoulos, I.P.; Kapsimalis, V. The Role of Sea State to the Morphological Changes of Prasonisi Tombolo, Rhodes Island, Greece. Water
**2022**, 14, 2016. [Google Scholar] [CrossRef] - Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng.
**2020**, 158, 103670. [Google Scholar] [CrossRef] - Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng.
**2021**, 170, 103977. [Google Scholar] [CrossRef] - Hellenic Cadastre. Available online: https://www.ktimatologio.gr/en (accessed on 10 August 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview(accessed on 5 December 2022). [CrossRef]
- Benedet, L.; List, J.H. Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits. Coast. Eng.
**2008**, 55, 1224–1236. [Google Scholar] [CrossRef] - Dobrochinski, J.P.H. Wave Climate Reduction and Schematization for Morphological Modeling. Master’s Thesis, Universidade do Vale do Itajaí & Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- DHI. MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic and Transport. Scientific Documentation; DHI Group: Hørsholm, Denmark, 2022. [Google Scholar]
- Thompson, W.C.; Nelson, A.R.; Sedivy, D.G. Wave Group Anatomy of Ocean Wave Spectra. Proc. Coast. Eng. Conf.
**1985**, 1, 661–677. [Google Scholar] [CrossRef] - Silvester, R. Engineering Aspects of Coastal Sediment Movement. J. Waterw. Harb. Div.
**1959**, 85, 11–40. [Google Scholar] [CrossRef] - Rashmi, R.; Aboobacker, V.M.; Vethamony, P.; John, M.P. Co-existence of wind seas and swells along the west coast of India during non-monsoon season. Ocean Sci.
**2013**, 9, 281–292. [Google Scholar] [CrossRef][Green Version] - Carter, D.J.T. Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Eng.
**1982**, 9, 17–33. [Google Scholar] [CrossRef] - Kazeminezhad, M.H.; Etemad-Shahidi, A.; Mousavi, S.J. Application of fuzzy inference system in the prediction of wave parameters. Ocean Eng.
**2005**, 32, 1709–1725. [Google Scholar] [CrossRef] - Yamartino, R.J. A Comparison of Several “Single-Pass” Estimators of the Standard Deviation of Wind Direction. J. Clim. Appl. Meteorol.
**1984**, 23, 1362–1366. [Google Scholar] [CrossRef] - Fisher, N.I. Statistical Analysis of Circular Data; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Soukissian, T.H. Probabilistic modeling of directional and linear characteristics of wind and sea states. Ocean Eng.
**2014**, 91, 91–110. [Google Scholar] [CrossRef] - Belibassakis, K.A.; Karathanasi, F.E. Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia
**2017**, 59, 350–364. [Google Scholar] [CrossRef] - Daghigh, H.; Khaniki, A.K.; Bidokhti, A.A.; Habibi, M. Prediction of bed ripple geometry under controlled wave conditions: Wave-flume experiments and MIKE21 numerical simulations. Indian J. Geo-Mar. Sci.
**2017**, 46, 529–537. [Google Scholar] - Gad, F.-K.; Hatiris, G.-A.; Loukaidi, V.; Dimitriadou, S.; Drakopoulou, P.; Sioulas, A.; Kapsimalis, V. Long-Term Shoreline Displacements and Coastal Morphodynamic Pattern of North Rhodes Island, Greece. Water
**2018**, 10, 849. [Google Scholar] [CrossRef][Green Version] - Gharibreza, M.; Nasrollahi, A.; Afshar, A.; Amini, A.; Eisaei, H. Evolutionary trend of the Gorgan Bay (southeastern Caspian Sea) during and post the last Caspian Sea level rise. CATENA
**2018**, 166, 339–348. [Google Scholar] [CrossRef] - Kaergaard, K.; Fredsoe, J. A numerical shoreline model for shorelines with large curvature. Coast. Eng.
**2013**, 74, 19–32. [Google Scholar] [CrossRef] - Houston, J.R. Beach-Fill Volume Required to Produce Specified Dry Beach Width. Coastal Engineering Technical Note 11-32; Coastal Engineering Research Center: Vicksburg, MS, USA, 1995. [Google Scholar]
- van Rijn, L.; Walstra, D.J.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models. Coast. Eng.
**2003**, 47, 295–327. [Google Scholar] [CrossRef] - Sutherland, J.; Walstra, D.J.R.; Chesher, T.J.; van Rijn, L.C.; Southgate, H.N. Evaluation of coastal area modelling systems at an estuary mouth. Coast. Eng.
**2004**, 51, 119–142. [Google Scholar] [CrossRef]

**Figure 1.**The study area of the coast of Mastichari and the offshore wind and wave data extraction point in Kos island, Greece.

**Figure 2.**The three mesh density level zones in the computational domain, and the baseline, the coastline, the edge line, and the active profile elements used in the Shoreline Morphology module. Created in MIKE 21 mesh generator environment.

**Figure 4.**Rose diagram of wind velocity ${U}_{w}$ (

**left**) and significant wave height ${H}_{m0}$ (

**right**) in the year 2021.

**Figure 5.**The 12 equal Energy Flux bins (rectangles) and the 12 representative wave conditions (red circles) derived from the Energy Flux Method (1 January 2021–31 December 2021).

**Figure 6.**The extraction of wave events time series from an indicative subset of data by the wind and wave chronology-based reduction technique (

**up**) and the wave chronology-based reduction techniques (

**below**) using different values for $\mathsf{\Delta}h$, $\mathsf{\Delta}t$, and $\mathsf{\Delta}d$.

**Figure 7.**Diagrams of the reference time series and the four chronology-based reduction techniques’ time series for ${H}_{m0}$ (

**up**), ${T}_{p}$ (

**middle**), and $MWD$ (

**below**).

**Figure 8.**Scatter diagrams of the coefficients of variation towards the mean values of ${H}_{m0}$ and ${T}_{p}$ of the produced wave events using the four chronology-based reduction techniques.

**Figure 9.**Visual comparison of the reference simulation and the applied wave input reduction techniques simulations regarding the final bottom evolution at the end of 2021.

**Figure 10.**Bottom-level evolution maps at specific time steps of the year 2021 obtained by the wave chronology-based input reduction technique (5th simulation).

s/n | Reduction Technique | ΜORFAC | $\mathit{d}\mathit{t}\text{}\left(\mathbf{s}\right)$ |
---|---|---|---|

1 | Reference simulation | 1 | 3600 |

2 | Energy Flux (5 rep.) | 15 | 3600 |

3 | Wind and wave chronology | 5 | 1800 |

4 | Wave chronology: $\mathsf{\Delta}h$ = 0.2 m, $\mathsf{\Delta}t$ = 0.5 s, $\mathsf{\Delta}d$ = 10 deg. | 5 | 1800 |

5 | Wave chronology: $\mathsf{\Delta}h$ = 0.5 m, $\mathsf{\Delta}t$ = 1.0 s, $\mathsf{\Delta}d$ = 15 deg. | 10 | 1800 |

6 | Wave chronology: $\mathsf{\Delta}h$ = 0.8 m, $\mathsf{\Delta}t$ = 1.5 s, $\mathsf{\Delta}d$ = 20 deg. | 15 | 1800 |

s/n | Reduction Technique | Μorfac | dt (s) | Model Run-Time (hr) | Run-Time Reduction | $\mathit{B}\mathit{S}\mathit{S}$ |
---|---|---|---|---|---|---|

1 | Referrence simulation | 1 | 3600 | 14.65 | - | - |

2 | Energy Flux (5 rep.) | 15 | 3600 | 4.82 | 67% | 0.70 |

3 | Wind and wave chronology | 5 | 1800 | 6.71 | 54% | 0.87 |

4 | Wave chronology: $\mathsf{\Delta}h$ = 0.2 m, $\mathsf{\Delta}t$ = 0.5 s, $\mathsf{\Delta}d$ = 10 deg. | 5 | 1800 | 8.42 | 43% | 0.96 |

5 | Wave chronology: $\mathsf{\Delta}h$ = 0.5 m, $\mathsf{\Delta}t$ = 1.0 s, $\mathsf{\Delta}d$ = 15 deg. | 10 | 1800 | 4.07 | 72% | 0.85 |

6 | Wave chronology: $\mathsf{\Delta}h$ = 0.8 m, $\mathsf{\Delta}t$ = 1.5 s, $\mathsf{\Delta}d$ = 20 deg. | 15 | 1800 | 3.23 | 78% | 0.69 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Malliouri, D.I.; Petrakis, S.; Vandarakis, D.; Moraitis, V.; Goulas, T.; Hatiris, G.-A.; Drakopoulou, P.; Kapsimalis, V. A Chronology-Based Wave Input Reduction Technique for Simulations of Long-Term Coastal Morphological Changes: An Application to the Beach of Mastichari, Kos Island, Greece. *Water* **2023**, *15*, 389.
https://doi.org/10.3390/w15030389

**AMA Style**

Malliouri DI, Petrakis S, Vandarakis D, Moraitis V, Goulas T, Hatiris G-A, Drakopoulou P, Kapsimalis V. A Chronology-Based Wave Input Reduction Technique for Simulations of Long-Term Coastal Morphological Changes: An Application to the Beach of Mastichari, Kos Island, Greece. *Water*. 2023; 15(3):389.
https://doi.org/10.3390/w15030389

**Chicago/Turabian Style**

Malliouri, Dimitra I., Stelios Petrakis, Dimitrios Vandarakis, Vyron Moraitis, Tatiana Goulas, Georgios-Angelos Hatiris, Paraskevi Drakopoulou, and Vasilios Kapsimalis. 2023. "A Chronology-Based Wave Input Reduction Technique for Simulations of Long-Term Coastal Morphological Changes: An Application to the Beach of Mastichari, Kos Island, Greece" *Water* 15, no. 3: 389.
https://doi.org/10.3390/w15030389