Ammonia Nitrogen Removal by Gas–Liquid Discharge Plasma: Investigating the Voltage Effect and Plasma Action Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Procedure
2.3. Analysis Methods
3. Results and Discussion
3.1. Experimental Parameter Optimization
3.2. Effect of Applied Voltage on Ammonia Nitrogen Removal
3.3. Discharge Characteristics of Gas–Liquid Discharge Plasma
3.4. Gas–Liquid Discharge Plasma Active Species
3.5. Mechanism of Ammonia Nitrogen Removal by Gas–Liquid Discharge Plasma
- Altering the applied voltage leads to transitions in the discharge mode and affects the energy input.
- With the strengthening of the electric field, the kinetic energy of electrons in the plasma region increases, resulting in higher electron excitation temperatures and intensified electron collision processes. This leads to a decrease in electron density in the plasma region, but an increase in the concentration of active species in the discharge zone.
- The increase in the rotational temperature of the plasma facilitates higher collision frequencies between active species in the gas phase and the liquid phase. This, in turn, promotes gas–liquid interactions, increases the concentration of active species in the liquid phase, and ultimately improves ammonia nitrogen removal efficiency.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacFarlane, D.R.; Cherepanov, P.V.; Choi, J.; Suryanto, B.H.R.; Hodgetts, R.Y.; Bakker, J.M.; Ferrero Vallana, F.M.; Simonov, A.N. A Roadmap to the Ammonia Economy. Joule 2020, 4, 1186–1205. [Google Scholar] [CrossRef]
- Winter, L.R.; Chen, J.G. N-2 Fixation by Plasma-Activated Processes. Joule 2021, 5, 300–315. [Google Scholar] [CrossRef]
- Stevens, C.J. Nitrogen in the Environment. Science 2019, 363, 578–580. [Google Scholar] [CrossRef]
- Xiong, G.; Zhu, X.; Liu, M.; Yang, Y.; Chen, G.; Fu, T.; Ding, R.; Xu, X.; Wu, J. Nitrogen Cycle Pattern Variations during Seawater-Groundwater-River Interactions Enhance the Nitrogen Availability in the Coastal Earth Critical Zone. J. Hydrol. 2023, 624, 129932. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, E.G.; Li, Y.; Liu, H.; Vidal-Dorsch, D.E.; Giesy, J.P. Ecological Risks Posed by Ammonia Nitrogen (AN) and Un-Ionized Ammonia (NH3) in Seven Major River Systems of China. Chemosphere 2018, 202, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xiao, B.; Liu, S.-Q.; Meng, Z.; Chen, Z.-G.; Zou, C.-Y.; Liu, C.-B.; Chen, F.; Zhou, X. Photo-Fenton Degradation of Ammonia via a Manganese–Iron Double-Active Component Catalyst of Graphene–Manganese Ferrite under Visible Light. Chem. Eng. J. 2016, 283, 266–275. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent Advances in Municipal Landfill Leachate: A Review Focusing on Its Characteristics, Treatment, and Toxicity Assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Huebner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Kabuba, J.; Lephallo, J.; Rutto, H. Comparison of Various Technologies Used to Eliminate Nitrogen from Wastewater: A Review. J. Water Process Eng. 2022, 48, 102885. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.; Chen, D. Adsorbent Materials for Ammonium and Ammonia Removal: A Review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. [Google Scholar] [CrossRef]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced Oxidation Processes in Microreactors for Water and Wastewater Treatment: Development, Challenges, and Opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef] [PubMed]
- Magureanu, M.; Bilea, F.; Bradu, C.; Hong, D. A Review on Non-Thermal Plasma Treatment of Water Contaminated with Antibiotics. J. Hazard. Mater. 2021, 417, 125481. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on Electrical Discharge Plasma Technology for Wastewater Remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Liang, J.-P.; Zhou, X.-F.; Zhao, Z.-L.; Yang, D.-Z.; Wang, W.-C. Degradation of Trimethoprim in Aqueous by Persulfate Activated with Nanosecond Pulsed Gas-Liquid Discharge Plasma. J. Environ. Manag. 2021, 278, 111539. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, C.A. Recent Advances of Cold Plasma Technology for Water and Soil Remediation: A Critical Review. Chem. Eng. J. 2022, 428, 131657. [Google Scholar] [CrossRef]
- Fan, J.; Wu, H.; Liu, R.; Meng, L.; Fang, Z.; Liu, F.; Xu, Y. Non-Thermal Plasma Combined with Zeolites to Remove Ammonia Nitrogen from Wastewater. J. Hazard. Mater. 2021, 401, 123627. [Google Scholar] [CrossRef]
- Wu, H.; Fan, J.; Chen, W.; Yang, C. Dielectric Barrier Discharge-Coupled Fe-Based Zeolite to Remove Ammonia Nitrogen and Phenol Pollutants from Water. Sep. Purif. Technol. 2020, 243, 116344. [Google Scholar] [CrossRef]
- Aka, R.J.N.; Wu, S.; Mohotti, D.; Bashir, M.A.; Nasir, A. Evaluation of a Liquid-Phase Plasma Discharge Process for Ammonia Oxidation in Wastewater: Process Optimization and Kinetic Modeling. Water Res. 2022, 224, 119107. [Google Scholar] [CrossRef] [PubMed]
- Back, S.; Saito, N.; Lee, S. A Facile and Efficient Approach for the Removal of High Concentrations of Ammonia Nitrogen in Wastewater: Liquid-Phase Plasma Treatment. J. Environ. Chem. Eng. 2023, 11, 109075. [Google Scholar] [CrossRef]
- Adams, V.D. Water and Wastewater Examination Manual; Routledge: New York, NY, USA, 2017; ISBN 978-0-203-73413-1. [Google Scholar]
- Liang, J.P.; Zhao, Z.L.; Zhou, X.F.; Yuan, H.; Wang, H.L.; Wang, W.C.; Yang, D.Z. The Influences of Shielding Gas and Quartz Tube on Discharge Properties and Reactive Species Productions of Nanosecond Pulsed Gas-Liquid Discharge. J. Phys.-Appl. Phys. 2022, 55, 195204. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Z.; Liang, J.; Yuan, H.; Wang, W.; Yang, D. Measurement of Reactive Species in Different Solutions of Bubble Discharge with Varying O2/N2 Proportion in Ar: Analysis of Reaction Pathways. Plasma Process. Polym. 2019, 16, e1900001. [Google Scholar] [CrossRef]
- Hartley, A.M.; Asai, R.I. Spectrophotometric Determination of Nitrate with 2,6-Xylenol Reagent. Anal. Chem. 1963, 35, 1207–1213. [Google Scholar] [CrossRef]
- Bader, H.; Hoigné, J. Determination of Ozone in Water by the Indigo Method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kawano, H.; Watanabe, S.; Furuki, T.; Akamine, S.; Ichiki, R.; Ohkubo, T.; Kocik, M.; Mizeraczyk, J. Observation of OH Radicals Produced by Pulsed Discharges on the Surface of a Liquid. Plasma Sources Sci. Technol. 2011, 20, 034010. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, D.; Yan, G.; Ma, H.; Xiong, X.; Luo, J.; Zhang, X.; Liu, D.; Yang, S. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges. Plasma Sci. Technol. 2011, 13, 612–616. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, J.; Yang, D.-Z.; Zhou, X.-F.; Liang, J.-P.; Zhang, L.; Zhao, Z.-L.; Wang, W.-C. Plasma Characteristics and Mode Transition of Atmospheric Pressure Gas–Liquid Discharge Oxygen Plasma. J. Appl. Phys. 2020, 128, 093303. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Wen, J.; Yao, C.; Xu, G.; Li, Y.; Chang, Z.; Zhang, G.-J. Primary and Secondary Discharges in an Atmospheric Pressure Plasma Jet Fed with Heliumand Tetrafluoromethane Mixtures. Phys. Plasmas 2019, 26, 010703. [Google Scholar] [CrossRef]
- Meropoulis, S.; Aggelopoulos, C.A. Plasma Microbubbles vs Gas-Liquid DBD Energized by Low-Frequency High Voltage Nanopulses for Pollutants Degradation in Water: Destruction Mechanisms, Composition of Plasma-Activated Water and Energy Assessment. J. Environ. Chem. Eng. 2023, 11, 109855. [Google Scholar] [CrossRef]
- Wang, X.; Mei, J.; Luo, J.; Huang, Y.; Dionysiou, D.D. Process Intensification of Tetrabromobisphenol S Removal with a Bubble-Film Hybrid Plasma Reactor. Chem. Eng. J. 2022, 427, 131736. [Google Scholar] [CrossRef]
- Ognier, S.; Iya-sou, D.; Fourmond, C.; Cavadias, S. Analysis of Mechanisms at the Plasma-Liquid Interface in a Gas-Liquid Discharge Reactor Used for Treatment of Polluted Water. Plasma Chem. Plasma Process. 2009, 29, 261–273. [Google Scholar] [CrossRef]
- Kenner, R.D.; Ogryzlo, E.A. Rate Constant for the Deactivation of O2 (A3Σu+ by N2. Chem. Phys. Lett. 1983, 103, 209–212. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.-Z.; Qiao, J.-J.; Zhang, L.; Wang, W.-Z.; Zhao, Z.-L.; Zhou, X.-F.; Yuan, H.; Wang, W.-C. The Dynamic Evolution and Interaction with Dielectric Material of the Discharge in Packed Bed Reactor. Plasma Sources Sci. Technol. 2020, 29, 055004. [Google Scholar] [CrossRef]
- Kapaldo, J.; Han, X.; Ptasinska, S. Shielding-Gas-Controlled Atmospheric Pressure Plasma Jets: Optical Emission, Reactive Oxygen Species, and the Effect on Cancer Cells. Plasma Process. Polym. 2019, 16, e1800169. [Google Scholar] [CrossRef]
- Lukes, P.; Appleton, A.T.; Locke, B.R. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors. IEEE Trans. Ind. Appl. 2004, 40, 60–67. [Google Scholar] [CrossRef]
- Hofmann, S.; Van Gessel, A.F.H.; Verreycken, T.; Bruggeman, P. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Sci. Technol. 2011, 20, 065010. [Google Scholar] [CrossRef]
- Nyholm, K. Measurements of OH Rotational Temperatures in Flames by Using Polarization Spectroscopy. Opt. Commun. 1994, 111, 66–70. [Google Scholar] [CrossRef]
- Konjević, N.; Ivković, M.; Sakan, N. Hydrogen Balmer Lines for Low Electron Number Density Plasma Diagnostics. Spectrochim. Acta Part B At. Spectrosc. 2012, 76, 16–26. [Google Scholar] [CrossRef]
- Wang, S.; Yang, D.-Z.; Zhou, R.; Zhou, R.; Fang, Z.; Wang, W.; Ostrikov, K. Mode Transition and Plasma Characteristics of Nanosecond Pulse Gas-Liquid Discharge: Effect of Grounding Configuration. Plasma Process. Polym. 2020, 17, e1900146. [Google Scholar] [CrossRef]
- Adams, N.G.; Poterya, V.; Babcock, L.M. Electron Molecular Ion Recombination: Product Excitation and Fragmentation. Mass Spectrom. Rev. 2006, 25, 798–828. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Kondeti, V.S.S.K.; Sadeghi, N.; Bruggeman, P.J. Plasma Dynamics, Instabilities and OH Generation in a Pulsed Atmospheric Pressure Plasma with Liquid Cathode: A Diagnostic Study. Plasma Sources Sci. Technol. 2022, 31, 025008. [Google Scholar] [CrossRef]
- Simek, M. Optical Diagnostics of Streamer Discharges in Atmospheric Gases. J. Phys.-Appl. Phys. 2014, 47, 463001. [Google Scholar] [CrossRef]
- Bruggeman, P.; Schram, D.C.; Kong, M.G.; Leys, C. Is the Rotational Temperature of OH(A–X) for Discharges in and in Contact with Liquids a Good Diagnostic for Determining the Gas Temperature? Plasma Process. Polym. 2009, 6, 751–762. [Google Scholar] [CrossRef]
- Bruggeman, P.; Schram, D.C. On OH Production in Water Containing Atmospheric Pressure Plasmas. Plasma Sources Sci. Technol. 2010, 19, 045025. [Google Scholar] [CrossRef]
- Yang, Y.; Ricoveri, A.; Demeestere, K.; Van Hulle, S. Advanced Treatment of Landfill Leachate through Combined Anammox-Based Biotreatment, O3/H2O2 Oxidation, and Activated Carbon Adsorption: Technical Performance, Surrogate-Based Control Strategy, and Operational Cost Analysis. J. Hazard. Mater. 2022, 430, 128481. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, C.; Zhou, D. Positive and Negative Effects of Recirculating Aquaculture Water Advanced Oxidation: O3 and O3/UV Treatments Improved Water Quality but Increased Antibiotic Resistance Genes. Water Res. 2023, 235, 119835. [Google Scholar] [CrossRef]
- Jozwiakowski, K.; Marzec, M.; Fiedurek, J.; Kaminska, A.; Gajewska, M.; Wojciechowska, E.; Wu, S.; Dach, J.; Marczuk, A.; Kowlaczyk-Jusko, A. Application of H2O2 to Optimize Ammonium Removal from Domestic Wastewater. Sep. Purif. Technol. 2017, 173, 357–363. [Google Scholar] [CrossRef]
- Mouele, E.S.M.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; et al. A Critical Review on Ozone and Co-Species, Generation and Reaction Mechanisms in Plasma Induced by Dielectric Barrier Discharge Technologies for Wastewater Remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar] [CrossRef]
- Jing, L.; Chen, B.; Wen, D.; Zheng, J.; Zhang, B. The Removal of COD and NH3-N from Atrazine Production Wastewater Treatment Using UV/O3: Experimental Investigation and Kinetic Modeling. Environ. Sci. Pollut. Res. 2018, 25, 2691–2701. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Wu, R.A.; Liao, X.; Liu, D.; Cullen, P.J.; Zhou, R.-W.; Ding, T. Diagnostic Analysis of Reactive Species in Plasma-Activated Water (PAW): Current Advances and Outlooks. J. Phys.-Appl. Phys. 2022, 55, 023002. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Chen, Q.; Ostrikov, K. Recent Advances towards Aqueous Hydrogen Peroxide Formation in a Direct Current Plasma-Liquid System. High Volt. 2022, 7, 405–419. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, H.; Xu, Z.; Zhang, Z.; Cheng, C.; Ni, G.; Lan, Y.; Meng, Y.; Xia, W.; Chu, P.K. Preferential Production of Reactive Species and Bactericidal Efficacy of Gas-Liquid Plasma Discharge. Chem. Eng. J. 2019, 362, 402–412. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J. Selective Oxidation of Ammonium to Nitrogen Gas by Advanced Oxidation Processes: Reactive Species and Oxidation Mechanisms. J. Environ. Chem. Eng. 2023, 11, 110263. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Liu, T.; Wang, J. Photocatalytic Selective Oxidation of Ammonium to Dinitrogen by FeOx-MgO Activated Persulfate under Solar-Light Irradiation. Chem. Eng. J. 2023, 454, 140499. [Google Scholar] [CrossRef]
- Habibzadeh, F.; Miller, S.L.; Hamann, T.W.; Smith, M.R. Homogeneous Electrocatalytic Oxidation of Ammonia to N-2 under Mild Conditions. Proc. Natl. Acad. Sci. USA 2019, 116, 2849–2853. [Google Scholar] [CrossRef]
- Park, C.; Kwak, H.; Moon, G.; Kim, W. Biomimetic Photocatalysts for the Conversion of Aqueous- and Gas-Phase Nitrogen Species to Molecular Nitrogen via Denitrification and Ammonia Oxidation. J. Mater. Chem. A 2021, 9, 19179–19205. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Bai, J.; Shen, Z.; Li, L.; Xia, L.; Chen, S.; Zhou, B. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode. Environ. Sci. Technol. 2018, 52, 1413–1420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Chang, D.; Liang, J.; Lu, K.; Cui, X.; Li, Y.; Yang, D. Ammonia Nitrogen Removal by Gas–Liquid Discharge Plasma: Investigating the Voltage Effect and Plasma Action Mechanisms. Water 2023, 15, 3827. https://doi.org/10.3390/w15213827
Zheng Z, Chang D, Liang J, Lu K, Cui X, Li Y, Yang D. Ammonia Nitrogen Removal by Gas–Liquid Discharge Plasma: Investigating the Voltage Effect and Plasma Action Mechanisms. Water. 2023; 15(21):3827. https://doi.org/10.3390/w15213827
Chicago/Turabian StyleZheng, Zhi, Dalei Chang, Jianping Liang, Ke Lu, Xiao Cui, Yao Li, and Dezheng Yang. 2023. "Ammonia Nitrogen Removal by Gas–Liquid Discharge Plasma: Investigating the Voltage Effect and Plasma Action Mechanisms" Water 15, no. 21: 3827. https://doi.org/10.3390/w15213827