A Review of Seagrass Bed Pollution
Abstract
:1. Introduction
2. Challenges Confronted by Seagrass Bed
3. Pollution Status of Seagrass Beds
3.1. Eutrophication
3.2. Sulphides
3.3. Heavy Metals
3.4. Refractory Organic Compounds
3.5. Microplastics
3.6. Pathogenic Bacteria
4. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Unsworth, R.K.F.; Cullen-Unsworth, L.C.; Jones, B.L.H.; Lilley, R.J. The planetary role of seagrass conservation. Science 2022, 377, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Bagwell, C.E.; La Rocque, J.R.; Smith, G.W.; Polson, S.W.; Friez, M.J.; Longshore, J.W.; Lovell, C.R. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. Ecol. 2002, 39, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hamisi, M.I.; Lyimo, T.J.; Muruke, M.H.; Bergman, B. Nitrogen fixation by epiphytic and epibenthic diazotrophs associated with seagrass meadows along Tanzanian coast, Western Indian Ocean. Aquat. Microb. Ecol. 2009, 57, 33–42. [Google Scholar] [CrossRef]
- Ugarelli, K.; Laas, P.; Stingl, U. The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganism 2019, 7, 4–23. [Google Scholar] [CrossRef]
- Liu, S.; Trevathan-Tackett, S.M.; Lewis, C.J.E.; Huang, X.; Macreadie, P.I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 2020, 54, 14750–14760. [Google Scholar] [CrossRef]
- Nakakuni, M.; Watanabe, K.; Kaminaka, K.; Mizuno, Y.; Takehara, K.; Kuwae, T.; Yamamoto, S. Seagrass contributes substantially to the sedimentary lignin pool in an estuarine seagrass meadow. Sci. Total Environ. 2021, 793, 148488. [Google Scholar] [CrossRef]
- Stankovic, M.; Ambo-Rappe, R.; Carly, F.; Dangan-Galon, F.; Fortes, M.D.; Hossain, M.S.; Kiswara, W.; Van Luong, C.; Minh-Thu, P.; Mishra, A.K.; et al. Quantification of blue carbon in seagrass ecosystems of Southeast Asia and their potential for climate change mitigation. Sci. Total Environ. 2021, 783, 146858. [Google Scholar] [CrossRef]
- Groner, M.; Burge, C.; Kim, C.; Rees, E.; Van Alstyne, K.; Yang, S.; Wyllie-Echeverria, S.; Harvell, C. Plant characteristics associated with widespread variation in eelgrass wasting disease. Dis. Aquat. Org. 2016, 118, 159–168. [Google Scholar] [CrossRef]
- Lopez, B.; Hinesp, P.J.; Ash, C. The unrecognized value of grass. Science 2022, 377, 590–591. [Google Scholar] [CrossRef]
- Qin, L.-Z.; Kim, S.H.; Song, H.-J.; Kim, H.G.; Suonan, Z.; Kwon, O.; Kim, Y.K.; Park, S.R.; Park, J.-I.; Lee, K.-S. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Indic. 2020, 119, 106821–106831. [Google Scholar] [CrossRef]
- Tomasko, D.; Alderson, M.; Burnes, R.; Hecker, J.; Iadevaia, N.; Leverone, J.; Raulerson, G.; Sherwood, E. The effects of Hurricane Irma on seagrass meadows in previously eutrophic estuaries in Southwest Florida (USA). Mar. Pollut. Bull. 2020, 156, 111247. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Zhang, X.; Xu, S.; Liu, M.; Qiao, Y.; Zhang, Y.; Liang, J.; Wang, A.; Zhou, Y. The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. Sci. Total Environ. 2021, 793, 148398. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, R.K.; Ambo-Rappe, R.; Jones, B.L.; La Nafie, Y.A.; Irawan, A.; Hernawan, U.E.; Moore, A.M.; Cullen-Unsworth, L.C. Indonesia’s global significant seagrass meadows are under widespread threat. Sci. Total Environ. 2018, 634, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, D.; Chen, B.; Liu, X.; Ye, X.; Jiang, Q.; Zheng, X.; Du, J.; Chen, S. Mapping the seagrass conservation and restoration priorities: Coupling habitat suitability and anthropogenic pressures. Ecol. Indic. 2021, 129, 107960. [Google Scholar] [CrossRef]
- Stankovic, M.; Hayashizaki, K.-I.; Tuntiprapas, P.; Rattanachot, E.; Prathep, A. Two decades of seagrass area change: Organic carbon sources and stock. Mar. Pollut. Bull. 2021, 163, 111913. [Google Scholar] [CrossRef]
- Macreadie, P.I.; York, P.H.; Sherman, C.D.; Keough, M.J.; Ross, D.J.; Ricart, A.M.; Smith, T.M. No detectable impact of small-scale disturbances on ‘blue carbon’ within seagrass beds. Mar. Biol. 2014, 161, 2939–2944. [Google Scholar] [CrossRef]
- Liu, S.L.; Jiang, Z.J.; Wu, Y.C.; Zhang, J.P.; Zhao, C.Y.; Huang, X.P. Carbon storage mechanism of marine litter and its response to eutrophication. Sci. Bull. 2017, 62, 3309–3318. [Google Scholar]
- Terrados, J.; Duarte, C.M.; Kamp-Nielsen, L.; Agawin, N.S.R.; Gacia, E.; Lacap, D.; Fortes, M.D.; Borum, J.; Lubanski, M.; Greve, T. Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat. Bot. 1999, 65, 175–197. [Google Scholar] [CrossRef]
- Hasler-Sheetal, H.; Holmer, M. Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS ONE 2015, 10, e0129136. [Google Scholar] [CrossRef]
- Pedersen, O.; Binzer, T.; Borum, J. Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ. 2004, 27, 595–602. [Google Scholar] [CrossRef]
- Jensen, S.I.; Kuhl, M.; Prieme, A. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol. Ecol. 2007, 62, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Frenderiksen, M.S.; Glud, R.N. Oxygen dynamics in the rhizosphere of Zostera marina: A two-dimensional planar optode study. Limnol. Oceanogr. 2006, 51, 1072–1083. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. Bioscience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- García, R.; Holmer, M.; Duarte, C.M.; Marbà, N. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Glob. Chang. Biol. 2013, 19, 3629–3639. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.W.; Martin, B.C.; Wong, H.L.; Burns, B.P.; Kendrick, G.A. Sulfide intrusion in a habitat forming seagrass can be predicted from relative abundance of sulfur cycling genes in sediments. Sci. Total Environ. 2023, 864, 161144. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Orlando-Bonaca, M. Trace elements in Mediterranean seagrasses and macroalgae, A review. Sci. Total Environ. 2018, 618, 1152–1159. [Google Scholar] [CrossRef]
- Bonanno, G.; Venezaiano, V.; Orlando-Bonaca, M. Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci. Total Environ. 2020, 718, e137413. [Google Scholar] [CrossRef]
- Amado, F.G.M.; Creed, J.C.; Andrade, L.R.; Pfeiffer, W.C. Metal accumulation by Halodule wrightii populations. Aquat. Bot. 2004, 80, 241–251. [Google Scholar]
- Govers, L.L.; Lamers, L.P.; Bouma, T.J.; Eygensteyn, J.; de Brouwer, J.H.; Hendriks, A.J.; Huijbers, C.M.; van Katwijk, M.M. Seagrasses as indicators for coastal trace metal pollution: A global meta-analysis serving as a benchmark, and a Caribbean case study. Environ. Pollut. 2014, 195, 210–217. [Google Scholar] [CrossRef]
- Immaculate, J.K.; Lilly, T.T.; Patterson, J. Macro and micronutrients of seagrass species from Gulf of Mannar, India. MOJ Food Process. Technol. 2018, 6, 391–398. [Google Scholar]
- Singh, S.; Lal, M.M.; Southgate, P.C.; Wairiu, M.; Singh, A. Trace metal content in sediment cores and seagrass biomass from a tropical southwest Pacific Island. Mar. Pollut. Bull. 2021, 171, 112745. [Google Scholar] [CrossRef] [PubMed]
- Prange, J.A.; Dennision, W.C. Physiological responses of five seagrass species to trace metals. Mar. Pollut. Bull. 2000, 40, 327–336. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Choi, D.-H.; Noh, J.-H.; Ra, K. Heavy metal pollution assessment in coastal sediments and bioaccumulation on seagrass (Enhalus acoroides) of Palau. Mar. Pollut. Bull. 2021, 163, 11912. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Di Martino, V. Trace element compartmentation in the seagrass Posidonia oceanica and biomonitoring applications. Mar. Pollut. Bull. 2017, 116, 196–203. [Google Scholar] [CrossRef]
- Ambo-Rappe, R.; Lajus, D.L.; Schreider, M.J. Heavy metal impact on growth and leaf asymmetry of seagrass Halophila ovalis. J. Environ. Chem. Ecotoxicol. 2011, 3, 149–159. [Google Scholar]
- Apostolopoulou, M.-V.; Monteyne, E.; Krikonis, K.; Pavlopoulos, K.; Roose, P.; Dehairs, F. Monitoring polycyclic aromatic hydrocarbons in the Northeast Aegean Sea using Posidonia oceanica seagrass and synthetic passive samplers. Mar. Pollut. Bull. 2014, 87, 338–344. [Google Scholar] [CrossRef]
- Foght, J. Handbook of Hydrocarbon and Lipid Microbiology: Nitrogen Fixation and Hydrocarbon-Oxidizing Bacteria; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1661–1668. [Google Scholar]
- Ling, J.; Jiang, Y.-F.; Wang, Y.-S.; Dong, J.-D.; Zhang, Y.-Y.; Zhang, Y.-Z. Responses of bacterial communities in seagrass sediments to polycyclic aromatic hydrocarbon-induced stress. Ecotoxicology 2015, 24, 1517–1528. [Google Scholar] [CrossRef]
- Ling, J.; Zhang, Y.; Wu, M.; Wang, Y.; Dong, J.; Jiang, Y.; Yang, Q.; Zeng, S. Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. Int. J. Mol. Sci. 2015, 16, 14039–14055. [Google Scholar] [CrossRef]
- Ling, J.; Zhou, W.; Yang, Q.; Lin, X.; Zhang, Y.; Ahmad, M.; Peng, Q.; Dong, J. Effect of PAHs on nitrogen-fixing and sulfate-reducing microbial communities in seagrass Enhalus acoroides sediment. Arch. Microbiol. 2021, 203, 3443–3456. [Google Scholar] [CrossRef]
- Sun, F.-L.; Wang, Y.-S.; Sun, C.-C.; Peng, Y.-L.; Deng, C. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment. Ecotoxicology 2012, 21, 1651–1660. [Google Scholar] [CrossRef]
- Green, D.S.; Boots, B.; Blockley, D.J.; Rocha, C.; Thompson, R. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning. Environ. Sci. Technol. 2015, 49, 5380–5389. [Google Scholar] [CrossRef] [PubMed]
- Balestri, E.; Menicagli, V.; Vallerini, F.; Lardicci, C. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows? Sci. Total Environ. 2017, 605–606, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, L.; Nicastro, K.R.; Zardi, G.I.; Santos, C.B.d.L. Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Sci. Total Environ. 2020, 723, 138018. [Google Scholar] [CrossRef] [PubMed]
- Seeley, M.E.; Song, B.; Passie, R.; Hale, R.C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 2020, 11, 2372. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, L.; Li, W.-T.; Li, D. Microplastics in the seagrass ecosystems: A critical review. Sci. Total Environ. 2023, 902, 166152. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef]
- Menicagli, V.; Balestri, E.; Vallerini, F.; De Battisti, D.; Lardicci, C. Plastics and sedimentation foster the spread of a non-native macroalga in seagrass meadows. Sci. Total Environ. 2020, 757, 143812. [Google Scholar] [CrossRef]
- Brakel, J.; Reusch, T.B.; Bockelmann, A.C. Moderate virulence caused by the protist Labyrinthula zosterae in ecosystem foundation species Zostera marina under nutrient limitation. Mar. Ecol. Prog. Ser. 2017, 571, 97–108. [Google Scholar] [CrossRef]
- Sullivan, B.K.; Trevathan-Tackett, S.M.; Neuhauser, S.; Govers, L.L. Host-pathogen dynamics of seagrass diseases under future global change. Mar. Pollut. Bull. 2018, 134, 75–88. [Google Scholar] [CrossRef]
- Martin, D.L.; Chiari, Y.; Boone, E.; Sherman, T.D.; Ross, C.; Wyllie-Echeverria, S.; Gaydos, J.K.; Boettcher, A.A. Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease. Estuaries Coasts 2016, 39, 1403–1421. [Google Scholar] [CrossRef]
- Muehlstein, L.K. Perspectives on the wasting disease of eelgrass Zostera marina. Dis. Aquat. Org. 1989, 7, 211–221. [Google Scholar] [CrossRef]
- Muehlstein, L.K.; Porter, D.; Short, F.T. Labyrinthula Zosterae sp. Nov., the causative agent of wasting disease of eelgrass, Zostera Marina. Mycol. 1991, 83, 180–191. [Google Scholar] [CrossRef]
- Tan, M.H.; Loke, S.; Croft, L.J.; Gleason, F.H.; Lange, L.; Pilgaard, B.; Trevathan-Tackett, S.M. First genome of Labyrinthula sp., an opportunistic seagrass pathogen, reveals novel insight into marine protist phylogeny, Ecology and CAZyme Cell-Wall Degradation. Genes Genomes 2021, 82, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shim, J.B.; Lee, S.R. First report of Labyrinthula zosterae (Labyrinthulomycetes) as the causal pathogen of wasting disease in the seagrass Zostera marina in Korea. Plant Dis. 2021, 105, 8. [Google Scholar] [CrossRef]
- Duffin, P.; Martin, D.L.; Lohan, K.M.P.; Ross, C. Integrating host immune status, Labyrinthula spp. load and environmental stress in a seagrass pathosystem: Assessing immune markers and scope of a new qPCR primer set. PLoS ONE 2020, 15, e0230108. [Google Scholar] [CrossRef]
- Yoshioka, R.M.; Schram, J.B.; Galloway, A.W.E. Eelgrass pathogen Labyrinthula zosterae synthesizes essential fatty acids. Dis. Aquat. Org. 2019, 135, 89–95. [Google Scholar] [CrossRef]
- Trevathan-Tackett, S.M.; Sullivan, B.K.; Robinson, K.; Lilje, O.; Macreadie, P.I.; Gleason, F.H. Pathogenic Labyrinthula associated with Australian seagrasses: Considerations for seagrass wasting disease in the southern hemisphere. Microbiol. Res. 2018, 206, 74–81. [Google Scholar] [CrossRef]
- Sullivan, B.K.; Robinson, K.L.; Trevathan-Tackett, S.M.; Lilje, E.S.; Gleason, F.H.; Lilje, O. The first isolation and characterisation of the protist Labyrinthula sp. in Southeastern Australia. J. Eukaryot. Microbiol. 2017, 64, 504–513. [Google Scholar] [CrossRef]
- Chitrampalam, P.; Goldberg, N.; Olsen, M.W. Labyrinthula species associated with turfgrasses in Arizona and New Mexico. Eur. J. Plant Pathol. 2015, 143, 485–493. [Google Scholar] [CrossRef]
- Trevathan-Tackett, S.M.; Lane, A.L.; Bishop, N.; Ross, C. Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquat. Bot. 2015, 122, 1–8. [Google Scholar] [CrossRef]
- Bockelmann, A.C.; Tams, V.; Ploog, J.; Schubert, P.R.; Reusch, T.B.H. Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosteraein in Northern European eelgrass (Zostera marina) beds. PLoS ONE 2013, 8, e62169. [Google Scholar] [CrossRef] [PubMed]
- Bockelmann, A.C.; Beining, K.; Reusch, T.B.H. Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds. Mar. Ecol. Prog. Ser. 2012, 445, 109–116. [Google Scholar] [CrossRef]
- Yadagiri, K.K.; Kerrigan, J.; Martin, S.B. Improved methods for axenic culture of Labyrinthula terrestris, causal agent of rapid blight of turfgrasses. Can. J. Microbiol. 2012, 58, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Hyder, N.; Wong, F.P.; Koski, A.; Tisserat, N.; Stowell, L. First report of rapid blight caused by Labyrinthula terrestris on Poa annua in Colorado. Plant Dis. 2010, 94, 919. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, D.M.; Olsen, M.W.; Gilbertson, R.L. Labyrinthula terrestris sp. nov., a new pathogen of turf grass. Mycologia 2005, 97, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Sen, B.; Wang, Q.; Xie, Y.; He, Y.; Wang, G. Molecular detection and spatiotemporal characterization of Labyrinthulomycete protist diversity in the coastal waters along the Pearl River Delta. Microb. Ecol. 2018, 77, 394–405. [Google Scholar] [CrossRef]
- Popova, O.V.; Belevich, T.A.; Golyshev, S.A.; Kireev, I.I.; Aleoshin, V.V. Labyrinthula diatomea n. sp.—A Labyrinthulid associated with marine diatoms. J. Eukaryot. Microbiol. 2020, 67, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Hassett, B.T. A widely distributed thraustochytrid parasite of diatoms isolated from the Arctic represents a gen. and sp. nov. J. Eukaryot. Microbiol. 2020, 67, 480–490. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, H.; Xie, Y.; He, Y.; Sen, B.; Wang, G. Culturable diversity and lipid production profile of Labyrinthulomycete protists isolated from coastal mangrove habitats of China. Mar. Drugs 2019, 17, 268–285. [Google Scholar] [CrossRef]
Host | Labyrinthula | Sampling Site | Sampling Time | Main Content | References |
---|---|---|---|---|---|
Halophila australis | Labyrinthula SR_Ha_C | Victoria, Australia | March 2016 (early autumn, Australia) | The genomic sketch and predicted protein group of the pathogenic isolate Labyrinth SR_HA_C were proposed. Phylogeny and cross-phylum comparisons reveal the evolutionary history of stramenopiles | [54] |
Zostera marina | Labyrinthula zosterae | Republic of Korea | April–September 2013 | The first report on L. zosterae, a causative agent of consumptive disease of seagrass Z. marina, in Republic of Korea | [55] |
Thalassia testudinum | Labyrinthula sp. | Florida | May 2015 | A sensitive qPCR method was established with universal applicability to the seagrass pathogen Labyrinthula worldwide. A host immunization panel was developed that could evaluate factors that may affect host, Labyrinthula and environment. | [56] |
Eelgrass | Labyrinthula zosterae | Southern bog in Charleston, Oregon, USA | 2017 and 2019 | Abnormally large amounts of DHA was observed in marine parasite L. zosterae which may be an unknown source of long-chain polyunsaturated fatty acids in the eel grass ecosystem | [57] |
Amphibolis antarctica, Halophila australis, Heterozostera nigricaulis, Posidonia australis, Zostera muelleri | Labyrinthula | Southeast Australia | March 2016 (early autumn, Australia) | The Labyrinthula isolate was first cultured, genotyped and pathogenicity identified in Australia, and thus provide a preliminary ecological understanding of consumptive diseases in Australia | [58] |
Zostera muelleri, Halophila ovalis, Heterozostera nigricaulis, Posidonia australis | Labyrinthula sp. | Southeast Australia | March 2014–October 2015 | Isolation and characterization of Labyrinthula in southeastern Australia for the first time in Australia | [59] |
Turfgrass | Labyrinthula spp. | New Mexico and Arizona | 2011 and 2012 | Genetic diversity, pathogenicity and morphological differences of Labyrinthula were determined for rapid blight in lawn grass from new Mexico and Arizona | [60] |
Thalassia testudinum | Labyrinthula sp. | Florida | June 2010 | Phenols and potential novel, unspecified non-phenolic metabolites from seagrass Thalassia testudinum Banks ex Konig were demonstrated to have anti-Labyrinthula activity by in vitro bioassay | [61] |
Zostera marina | Labyrinthula zosterae | Northern Europe (Portugal, Germany, Denmark, southern Norway and western Sweden) | 2010–2012 | The quantitative PCR (QPCR) technology was used to quantitatively analyze the abundance and prevalence of the pathogen causing the wasting disease in 19 phyllostachys species in the coastal area of northern Europe using the species-specific primers designed for the internal transcribed spacer (ITS1) of L. zosterae | [62] |
Zostera marina | Labyrinthula zosterae | Northern Europe | August–October 2010 | The 18S rDNA (1400 bp) of L. zosterae isolates (N = 41) from 6 sites in northern Europe and 1 site in the south (Adriatic) were identified to assess the identity and potential diversity of their endogenous protists | [63] |
Turfgrass | Labyrinthula terrestris | United States of America | 2003–2007 | The most commonly used Labyrinthula growth medium serum seawater agar (SSA) was modified, and the modified SSA (MSSA) and grass extract SSA (GESSA) media were designed | [64] |
Poa annua | Labyrinthula terrestris | Adams county, Colorado, USA | April 2009 | The first report of rapid wasting disease by L. terrestris on Poa annua, Colorado, as well as the pathological features of plants and the pathogenic characteristics | [65] |
Poa trivialis L., Lolium perenne L. | Labyrinthula terrestris | Arizona, USA | February 2003 | The isolation, morphological characteristics and growth curve of the new Labyrinthula species which were named L. terrestris | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, X.; Chen, Z.; Wang, Q.; Zuo, J.; Yu, S.; Guo, R. A Review of Seagrass Bed Pollution. Water 2023, 15, 3754. https://doi.org/10.3390/w15213754
Zhang Y, Yu X, Chen Z, Wang Q, Zuo J, Yu S, Guo R. A Review of Seagrass Bed Pollution. Water. 2023; 15(21):3754. https://doi.org/10.3390/w15213754
Chicago/Turabian StyleZhang, Yong, Xinping Yu, Zuoyi Chen, Qiuzhen Wang, Jiulong Zuo, Shanshan Yu, and Ran Guo. 2023. "A Review of Seagrass Bed Pollution" Water 15, no. 21: 3754. https://doi.org/10.3390/w15213754