The Role of Geomorphology on Flood Propagation in a Large Tropical River: The Peculiar Case of the Araguaia River, Brazil
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Hydrological Data
3.2. Flood Type Classification
- Type A: Very large flood peaks that surpass the channel capacities, such as the floods in 1980 and 1983, resulting in significant peak transmission losses between Aruanã and Luís Alves (−27%) and even higher losses (−33%) between Aruanã and Faz. Telésforo.
- Type B: Floods characterized by small magnitudes, showing slight increases up to Luís Alves, followed by relatively consistent levels or modest declines from Luís Alves to Faz. Telésforo. This pattern is evident in the years 1977, 1978, and 1979.
- Type C: Intermediate floods that exhibit a slight increase in peak flows between Aruanã and Bandeirantes, followed by a trend of losses (−4.5%) between Bandeirantes and Luís Alves. They may display conservative magnitudes or experience additional decreases in peak discharge between Luís Alves and Faz. Telésforo. This flood type happened in the years 1982 and 1985.
3.3. Geomorphic and Flood Metrics
3.4. Statistical Analysis
4. Results
4.1. The Flood Types in the Middle Araguaia River
4.2. Propagation of Flood Waves along the Middle Araguaia River
4.3. Impact of Tributaries on Mainstem Flood Attenuation
4.4. Influence of Geomorphic Variables on the Floods
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latrubesse, E.M.; Sinha, R. Human Impacts on Sediment and Morphodynamics of Large Tropical Rivers, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Wohl, E.; Barros, A.; Brunsell, N.; Chappell, N.A.; Coe, M.; Giambelluca, T.; Goldsmith, S.; Harmon, R.; Hendrickx, J.M.H.; Juvik, J.; et al. The Hydrology of the Humid Tropics. Nat. Clim. Chang. 2012, 2, 655–662. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Amsler, M.L.; de Morais, R.P.; Aquino, S. The Geomorphologic Response of a Large Pristine Alluvial River to Tremendous Deforestation in the South American Tropics: The Case of the Araguaia River. Geomorphology 2009, 113, 239–252. [Google Scholar] [CrossRef]
- Coe, M.T.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The Effects of Deforestation and Climate Variability on the Streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131. [Google Scholar] [CrossRef]
- Guimarães, D.P.; Landau, E.C. Georreferenciamento Dos Pivôs Centrais de Irrigação No Brasil: Ano-Base 2020. Bol. Pesqui. Desenvolv. 2020, 1, 64. [Google Scholar]
- Companhia de Desenvolvimento Dos Vales Do São Francisco E Do Parnaíba—Codevasf. Codevasf Anuncia Investimentos Federais no Projeto de Irrigação de Luiz Alves Do Araguaia, em Goiás. Available online: https://www.codevasf.gov.br/noticias/2020/codevasf-anuncia-investimentos-federais-no-projeto-de-irrigacao-de-luiz-alves-do-araguaia-em-goias (accessed on 12 July 2023).
- Latrubesse, E.M.; Arima, E.; Ferreira, M.E.; Nogueira, S.H.; Wittmann, F.; Dias, M.S.; Dagosta, F.C.P.; Bayer, M. Fostering Water Resource Governance and Conservation in the Brazilian Cerrado Biome. Conserv. Sci. Pract. 2019, 1, e77. [Google Scholar] [CrossRef]
- Aquino, S.; Latrubesse, E.M.; de Souza Filho, E.E. Relações Entre o Regime Hidrológico e Os Ecossistemas Aquáticos Da Planície Aluvial Do Rio Araguaia. Acta Sci. Biol. Sci. 2008, 30, 361–369. [Google Scholar] [CrossRef]
- Lininger, K.B.; Latrubesse, E.M. Flooding Hydrology and Peak Discharge Attenuation along the Middle Araguaia River in Central Brazil. Catena 2016, 143, 90–101. [Google Scholar] [CrossRef]
- Ferreira, P.D.; de Tarso Amorim Castro, P. Nest Placement of the Giant Amazon River Turtle, Podocnemis Expansa, in the Araguaia River, Goiäs State, Brazil. Ambio 2005, 34, 212–217. [Google Scholar] [CrossRef]
- Kurzatkowski, D.; Leuschner, C.; Homeier, J. Effects of Flooding on Trees in the Semi-Deciduous Transition Forests of the Araguaia Floodplain, Brazil. Acta Oecologica 2015, 69, 21–30. [Google Scholar] [CrossRef]
- Nabout, J.C.; Nogueira, I.S.; Oliveira, L.G. Phytoplankton Community of Floodplain Lakes of the Araguaia River, Brazil, in the Rainy and Dry Seasons. J. Plankton Res. 2006, 28, 181–193. [Google Scholar] [CrossRef]
- Rocha, R.G.; Ferreira, E.; Fonseca, C.; Justino, J.; Leite, Y.L.R.; Costa, L.P. Seasonal Flooding Regime and Ecological Traits Influence Genetic Structure of Two Small Rodents. Ecol. Evol. 2014, 4, 4598–4608. [Google Scholar] [CrossRef] [PubMed]
- Tejerina-garro, F.L.; Fortin, R.; Rodríguez, M.A. Tejerina-Garro et Al 1998 Fish Communities Middle Rio Araguaia.Pdf. Environ. Biol. Fishes 1998, 51, 399–410. [Google Scholar] [CrossRef]
- Suizu, T.M.; Latrubesse, E.M.; Bayer, M. Geomorphic Diversity of the Middle Araguaia River, Brazil: A Segment-Scale Classification to Support River Management. J. South Am. Earth Sci. 2023, 121, 104166. [Google Scholar] [CrossRef]
- Climate Engine; Desert Research Institute, University of Idaho. 2023. version 2.1. Available online: http://climateengine.org (accessed on 27 June 2023).
- Aquino, S.; Latrubesse, E.M.; de Souza Filho, E.E. Caracterização Hidrológica e Geomorfológica Dos Afluentes Da Bacia Do Rio Araguaia. Rev. Bras. Geomorfol. 2009, 10, 43–54. [Google Scholar] [CrossRef]
- Bayer, M. Diagnóstico Dos Processos de Erosão/Assoreamento Na Planície Aluvial Do Rio Araguaia: Entre Barra Do Garças e Cocalinho; Universidade Federal de Goiás (UFG): Goiânia, Brazil, 2002. [Google Scholar]
- Marinho, G.V.; de Castro, S.S.; de Campos, A.B. Hydrology and Gully Processes in the Upper Araguaia River Basin, Central Brazil. Z. Fur Geomorphol. Suppl. 2006, 145, 119–145. [Google Scholar]
- Ferreira, M.E.; Ferreira, L.G.; Latrubesse, E.M.; Miziara, F. High Resolution Remote Sensing Based Quantification of the Remnant Vegetation Cover in the Araguaia River Basin, Central Brazil. Int. Geosci. Remote Sens. Symp. 2008, 4, 2008–2010. [Google Scholar] [CrossRef]
- Latrubesse, E.M. Patterns of Anabranching Channels: The Ultimate End-Member Adjustment of Mega Rivers. Geomorphology 2008, 101, 130–145. [Google Scholar] [CrossRef]
- Dunne, T.; Leopold, L.B. Water in Environmental Planning; Macmillan: New York, NY, USA, 1978. [Google Scholar]
- Lininger, K.B. The Hydro-Geomorphology of the Middle Araguaia River: Floodplain Dynamics of the Largest Fluvial System Draining the Brazilian Cerrado; The University of Texas at Austin: Austin, TX, USA, 2013. [Google Scholar]
- Polvi, L.E.; Wohl, E.E.; Merritt, D.M. Geomorphic and Process Domain Controls on Riparian Zones in the Colorado Front Range. Geomorphology 2011, 125, 504–516. [Google Scholar] [CrossRef]
- Spellman, P.; Gulley, J.; Martin, J.B.; Loucks, J. The Role of Antecedent Groundwater Heads in Controlling Transient Aquifer Storage and Flood Peak Attenuation in Karst Watersheds. Earth Surf. Process. Landforms 2019, 44, 77–87. [Google Scholar] [CrossRef]
- Wolff, C.G.; Burges, S.J. An Analysis of the Influence of River Channel Properties on Flood Frequency. J. Hydrol. 1994, 153, 317–337. [Google Scholar] [CrossRef]
- Goetz, J.; Schwarz, C. Fasstr: Analyze, Summarize, and Visualize Daily Streamflow Data. 2023. Available online: https://bcgov.github.io/fasstr/ (accessed on 28 June 2023).
- Mandych, A.F. Classification of Floods. In Encyclopedia of Life Support Systems. Natural Disasters Vol. II.; Kotlyakov, V.M., Ed.; UNESCO, Eolss Pbl. Co.: Paris, France, 2010; pp. 63–88. [Google Scholar]
- Posit Team RStudio. Integrated Development Environment for R 2023; RStudio: Boston, MA, USA, 2023. [Google Scholar]
- Aquino, S. Mecanismos de Transmissão de Fluxos de Água e Sedimentos Em Dois Grandes Rios Aluviais Impactados Pela Atividade Humana: O Araguaia e o Paraná; Universidade Estadual de Maringá (UEM): Maringá, Brazil, 2007. [Google Scholar]
- Bhowmik, N.G.; Stall, J.B. Hydraulic Geometry and Carrying Capacity of Floodplains; University of Illinois at Urbana-Champaign. Water Resources Center: Champaign, IL, USA, 1979; p. 147. [Google Scholar]
- Woltemade, C.J.; Potter, K.W. A Watershed Modeling Analysis of Fluvial Geomorphologic Influences on Flood Peak Attenuation. Water Resour. Res. 1994, 30, 1933–1942. [Google Scholar] [CrossRef]
- Archer, D.R. Flood Wave Attenuation Due to Channel and Floodplain Storage and Effects on Flood Frequency. In Floods: Hydrological, Sedimentological and Geomorphological Implications; Beven, K., Carling, P., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 1989; pp. 37–46. [Google Scholar]
- Wohl, E. An Integrative Conceptualization of Floodplain Storage. Rev. Geophys. 2021, 59, e2020RG000724. [Google Scholar] [CrossRef]
- Ang, W.J.; Park, E.; Yang, X. Geomorphic Control on Stage-Area Hysteresis in Three of the Largest Floodplain Lakes. J. Hydrol. 2022, 614, 128574. [Google Scholar] [CrossRef]
- Hudson, P.F.; Colditz, R.R. Flood Delineation in a Large and Complex Alluvial Valley, Lower Pánuco Basin, Mexico. J. Hydrol. 2003, 280, 229–245. [Google Scholar] [CrossRef]
- Marchetti, Z.Y.; Latrubesse, E.M.; Pereira, M.S.; Ramonell, C.G. Vegetation and Its Relationship with Geomorphologic Units in the Parana River Floodplain, Argentina. J. South Am. Earth Sci. 2013, 46, 122–136. [Google Scholar] [CrossRef]
- Marinho, R.R.; Zanin, P.R.; Filizola Junior, N.P. The Negro River in the Anavilhanas Archipelago: Streamflow and Geomorphology of a Complex Anabranching System in the Amazon. Earth Surf. Process. Landf. 2022, 47, 1108–1123. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. The Hydro-Geomorphologic Complexity of the Lower Amazon River Floodplain and Hydrological Connectivity Assessed by Remote Sensing and Field Control. Remote Sens. Environ. 2017, 198, 321–332. [Google Scholar] [CrossRef]
- Meade, R.H.; Rayol, J.M.; da Conceicão, S.C.; Natividade, J.R.G. Backwater Effects in the Amazon River Basin of Brazil. Environ. Geol. Water Sci. 1991, 18, 105–114. [Google Scholar] [CrossRef]
- Richey, J.E.; Mertes, L.A.K.; Dunne, T.; Victoria, R.L.; Forsberg, B.R.; Tancredi, A.C.N.S.; Oliveira, E. Sources and Routing of the Amazon River Flood Wave. Global Biogeochem. Cycles 1989, 3, 191–204. [Google Scholar] [CrossRef]
- Montero, J.C.; Latrubesse, E.M. The Igapó of the Negro River in Central Amazonia: Linking Late-Successional Inundation Forest with Fluvial Geomorphology. J. South Am. Earth Sci. 2013, 46, 137–149. [Google Scholar] [CrossRef]
- Stevaux, J.C.; de Macedo, H.A.; Assine, M.L.; Silva, A. Changing Fluvial Styles and Backwater Flooding along the Upper Paraguay River Plains in the Brazilian Pantanal Wetland. Geomorphology 2020, 350, 106906. [Google Scholar] [CrossRef]
- Assine, M.L.; Silva, A. Contrasting Fluvial Styles of the Paraguay River in the Northwestern Border of the Pantanal Wetland, Brazil. Geomorphology 2009, 113, 189–199. [Google Scholar] [CrossRef]
Number * | Gauging Station | Code No. | Upstream Catchment Area (km2) | Years of Record | Number of Missing Days |
---|---|---|---|---|---|
1 | Montes Claros de Goiás | 24950000 | 10,100 | 1975–2014 | 0 |
2 | Travessão | 25130000 | 5310 | 1975–2014 | 92 |
3 | Jusante do Rio Pintado | 25800000 | 18,300 | 1980–2014 | 1411 |
4 | Santo Antônio do Leverger | 26300000 | 59,300 | 1975–2014 | 0 |
5 | Barreira do Pequi | 26710000 | 8150 | 1987–2014 | 79 |
6 | Jeroaquara | 1550001 | - | 1975–2014 | 183 |
7 | Mozarlândia | 1450001 | - | 1975–2014 | 153 |
8 | Lagoa da Flecha | 1450000 | - | 1975–2014 | 375 |
9 | Araguaiana | 24850000 | 50,120 | 1975–2014 | 0 |
10 | Aruanã | 25200000 | 76,688 | 1975–2014 | 0 |
11 | Bandeirantes | 25700000 | 93,027 | 1975–2014 | 0 |
12 | Luiz Alves | 25950000 | 117,910 | 1975–2014 | 0 |
13 | Fazenda Telésforo | 26030000 | 132,025 | 1975–1995 | 1128 |
14 | São Félix do Araguaia | 26350000 | 194,854 | 1975–2014 | 61 |
15 | Conceição do Araguaia | 27500000 | 325,740 | 1975–2014 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suizu, T.M.; Latrubesse, E.M.; Bayer, M. The Role of Geomorphology on Flood Propagation in a Large Tropical River: The Peculiar Case of the Araguaia River, Brazil. Water 2023, 15, 3725. https://doi.org/10.3390/w15213725
Suizu TM, Latrubesse EM, Bayer M. The Role of Geomorphology on Flood Propagation in a Large Tropical River: The Peculiar Case of the Araguaia River, Brazil. Water. 2023; 15(21):3725. https://doi.org/10.3390/w15213725
Chicago/Turabian StyleSuizu, Tainá Medeiros, Edgardo Manuel Latrubesse, and Maximiliano Bayer. 2023. "The Role of Geomorphology on Flood Propagation in a Large Tropical River: The Peculiar Case of the Araguaia River, Brazil" Water 15, no. 21: 3725. https://doi.org/10.3390/w15213725